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Fatigue correlates with the decrease in
parasympathetic sinus modulation induced
by a cognitive challenge
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Abstract

Background: It is known that enhancement of sympathetic nerve activity based on a decrease in parasympathetic
nerve activity is associated with fatigue induced by mental tasks lasting more than 30 min. However, to measure
autonomic nerve function and assess fatigue levels in both clinical and industrial settings, shorter experimental
durations and more sensitive measurement methods are needed. The aim of the present study was to establish an
improved method for inducing fatigue and evaluating the association between it and autonomic nerve activity.

Methods: Twenty-eight healthy female college students participated in the study. We used a kana pick-out test
(KPT) as a brief verbal cognitive task and recorded electrocardiography (ECG) to measure autonomic nerve activity.
The experimental design consisted of a 16-min period of ECG: A pre-task resting state with eyes open for 3 min
and eyes closed for 3 min, the 4-min KPT, and a post-task resting state with eyes open for 3 min and eyes closed
for 3 min.

Results: Baseline fatigue sensation, measured by a visual analogue scale before the experiment, was associated
with the decrease in parasympathetic sinus modulation, as indicated the by ratio of low-frequency component
power (LF) to high-frequency component power (HF), during the KPT. The LF/HF ratio during the post-KPT rest
with eyes open tended to be greater than the ratio during the KPT and correlated with fatigue sensation. Fatigue
sensation was correlated negatively with log-transformed HF, which is an index of parasympathetic sinus modulation,
during the post-KPT rest with eyes open.

Conclusions: The methods described here are useful for assessing the association between fatigue sensation and
autonomic nerve activity using a brief cognitive test in healthy females.
Background
Fatigue, defined as a difficulty in initiating or sustaining
voluntary activities [1], is experienced by many people
during or after a prolonged period of activity. Large
community surveys have reported that up to half of the
general adult population report fatigue [2,3]. This is also
true in Japan, where more than one third of the popula-
tion report chronic fatigue [4]. Epidemiological studies
have reported that the female/male ratio of people with
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chronic fatigue in the general population is approxi-
mately 2:1 [5,6], and Pikó et al. reported that fatigue
level was higher in female university students than in
male university students [7]. Acute fatigue is a normal
phenomenon that disappears after a period of rest. By
contrast, chronic fatigue is sometimes irreversible and
compensatory mechanisms that are useful in reducing
acute fatigue are not effective [8]. Chronic fatigue is
caused by the prolonged accumulation of acute fatigue.
Thus, in order to avoid chronic fatigue, it is important
to develop objective measures of fatigue and effective
strategies to recover from and avoid the accumulation of
acute fatigue.
Alterations of autonomic functions caused by fatigue

in healthy people have been measured by electrocardio-
gram (ECG) and accelerated plethysmography and can
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provide objective biomarkers of fatigue [4]. Decreased
parasympathetic sinus modulation and increased sympa-
thetic sinus modulation were induced in healthy volunteers
following a 30-min series of fatigue-inducing mental tasks
[9,10]. After a prolonged cognitive load for 8 h, correspond-
ing to a normal work day, we found that sympathetic
hyperactivity based on decreased parasympathetic sinus
modulation was positively correlated with subjective fatigue
level [11]. This suggests that enhancement of sympathetic
sinus modulation is closely related to fatigue induced by
lengthy mental tasks of 30 min to 8 h. However, to measure
autonomic nerve function and fatigue levels, both in
clinical and industrial settings, better experimental
designs, including briefer mental tasks and more sensi-
tive measures for detecting changes in sympathetico-
vagal balance, are needed.
In previous studies, for fatigue-inducing and fatigue-

evaluating tests, we have used 30 min or more of the 2-
back test [9,10] and an advanced trail making test [9-11],
both of which require working memory or selective
attention, to investigate the relation between fatigue and
autonomic nerve functions. The kana pick-out test (KPT)
is a divided-attention test (dual task) that has also been
used as a fatigue-inducing and fatigue-evaluating mental
task [11-13]. The KPT demands parallel processing during
a 4-min task. Participants must select a subset of letters
contained within a story while reading the story for com-
prehension for 2 min, and must then answer 10 questions
about the contents of the story for 2 min. In the present
study, we used the KPTas a brief but difficult mental task.
Autonomic nerve function during mental fatigue was

assessed during the KPT and while participants were sit-
ting quietly with their eyes closed or open for few minutes
rest before and after the KPT. We have previously re-
corded ECG and accelerated plethysmography with partic-
ipants’ eyes open [14] or closed [10,11] during rest, but
with eyes open only during the fatigue-inducing task. At-
tention levels are different between eyes open and eyes
closed conditions, therefore the sympathetico-vagal bal-
ance is also considered to be different, suggesting that
control of sympathetico-vagal balance could be evaluated
by comparing these conditions [15]. Therefore, in the
present study we measured ECG with both eyes closed
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Figure 1 Time course of the 16-min experimental period. Experiment
before and after the KPT.
and open to investigate the sensitivity of our measurement
method for detecting changes in autonomic nerve activity
produced by fatigue.
The aim of the present study was to establish an im-

proved fatigue measurement method for assessing the
association between fatigue sensation and autonomic
nerve activity in healthy female volunteers. We mea-
sured a 16-min period of ECG that covered a pre-KPT
resting state with eyes open (3 min) and eyes closed
(3 min), the 4-min KPT performed with eyes open, and
a post-KPT resting state with eyes open (3 min) and
eyes closed (3 min; Figure 1), and investigated the cor-
relation between baseline fatigue sensation and alter-
ations in autonomic nerve activity induced by the KPT.

Methods
Participants
The study group comprised 28 healthy female college
students [age, 20.8 ± 0.5 years (mean ± SD)]. Individuals
with a history of medical illness or taking chronic medi-
cations or supplemental vitamins were excluded. Current
smokers were also excluded because smoking is closely
associated with fatigue [16], sleep [17], and attentional
task performance [18] and it has been reported that female
cigarette smokers have abnormal sympathetic nerve activity
[19]. These findings indicate that smoking affects fatigue
and fatigue-related factors (sleep, task performance and
autonomic nerve function). The study protocol was ap-
proved by the Ethics Committee of Kansai University of
Welfare Sciences, and all participants provided written in-
formed consent for participation in the study.

Experimental design
The time schedule for the experiments is shown in
Figure 1. On the day before the experiment and the
day of the experimental, participants were instructed
to avoid intensive physical and mental activities. We
conducted the experiment for around 1 h within the
period from 9:00 a.m. to noon in each participant. Be-
fore measurement of ECG, participants recorded their
subjective sensation of fatigue on a visual analogue
scale (VAS) from 0 (no fatigue) to 100 (complete ex-
haustion). To evaluate the autonomic nerve function
Answer
Session
(KPT-AS)

out test
)

2 min 3 min 3 min

Rest

Eyes Open
After
(EOA)

Eyes Closed
After
(ECA)

consists of performing the kana pick-out test (KPT) and resting states



Mizuno et al. Behavioral and Brain Functions 2014, 10:25 Page 3 of 8
http://www.behavioralandbrainfunctions.com/content/10/1/25
during the resting state before the KPT, ECG was re-
corded while participants sat in a chair for 6 min:
3 min with their eyes open and 3 min with their eyes
closed. Participants then performed the KPT for 4 min,
and ECG was recorded throughout. ECG was again re-
corded during the resting state after the KPT: 3 min
with eyes open and 3 min with eyes closed.

Electrocardiogram
ECG was recorded continuously during the experiment
using RF-ECG (GM3, Tokyo, Japan) and was analyzed
using MemCalc/Bonaly Light (SuwaTrust/GMS, Tokyo,
Japan). Frequency analyses for R-R interval variation were
analyzed with the maximum entropy method, which is cap-
able of estimating the power spectrum density from short
time series data, and is adequate to examine changes in
heart rate variability in different conditions of short dur-
ation [20,21]. The validity of the power spectral density of
the maximum entropy method has been confirmed by
comparing it to the autoregressive model [22]. The power
spectrum resolution was 256 Hz. For the frequency ana-
lyses, the total power (TP) was calculated as the power
within the frequency range 0 – 0.4 Hz. The very-low-
frequency component power (VLF) was calculated as the
power within the frequency range 0 – 0.05 Hz, the low-
frequency component power (LF) was calculated as the
power within the frequency range 0.04 – 0.15 Hz, and
the high-frequency component power (HF) as the
power within the frequency range 0.15 – 0.4 Hz. Abso-
lute LF and HF values were transformed to normalized
units (nu) as follows: [LF nu = LF/(TP – VLF) × 100]
and [HF nu = HF/(TP – VLF) × 100] [23,24]. LF is sim-
ultaneously a marker of sympathetic sinus modulation
increase and a marker of parasympathetic sinus modu-
lation decrease, LF nu is a marker of parasympathetic
sinus modulation decrease, HF nu is a marker of para-
sympathetic sinus modulation increase, and the LF/HF
ratio expressed in nu is a marker of parasympathetic
sinus modulation decrease [24].

Kana pick-out test
The KPT requires parallel processing of reading and se-
lection of letters, and also requires appropriate allocation
of attentional resources to the two activities. Participants
are shown a short story written in Japanese kana charac-
ters. They are required to find as many vowel symbols as
possible within 2 min, while understanding the meaning
of the story (dual-task session). Two min after the start
of the test, they are asked 10 questions about the con-
tents of the story over a 2 min period (answer session).
Japanese kana characters consist of 66 phonetic symbols
that include five vowels and the story consisted of 406
symbols with 61 vowels. The full score for this test is
therefore 61, and the full comprehension score is 10.
Statistical analyses
Log-transformed LF (ln LF), HF (ln HF) and LF/HF ratio
(ln LF/HF ratio) in the conditions (pre-KPT rest with
eyes open, pre-KPT rest with eyes closed, KPT dual-task
session, KPT answer session, post-KPT rest with eyes
open and post-KPT rest with eyes closed) were analyzed
using [11,23] parametric one-way repeated measures
analysis of variance (ANOVA). When statistically significant
effects were found, intergroup differences were evaluated
using the Tukey's honestly significant difference test.
Stepwise multiple regression analyses were calculated
between the VAS score for fatigue and autonomic nerve
function. All p-values were two-tailed, and p-values less
than 0.05 were considered significant. These analyses
were performed with the IBM SPSS 20.0 software pack-
age (SPSS Inc, Chicago, IL).

Results
The results for ECG are summarized in Figure 2. One-
way repeated measures ANOVA revealed a significant
main effect for ln LF [F(5, 27) = 8.46, p < 0.001] and ln
HF [F(5, 27) = 3.16, p = 0.010], and a trend of a main ef-
fect for LF/HF ratio [F(5, 27) = 2.10, p = 0.069]. The ln
LF of post-KPT rest with eyes open was significantly
higher than that of pre-KPT rest with eyes open and
closed, KPT dual-task session, KPT answer session, and
post-KPT rest with eyes closed (Figure 2a). The ln HF of
the dual-task session and the answer session were lower
than that of pre-KPT rest with eyes open (Figure 2b). The
LF/HF ratio of post-KPT rest with eyes open showed a
trend to be greater than that of KPT answer session
(Figure 2c).
To investigate the effect of each participant’s subjective

fatigue sensation on autonomic nerve activity, multiple
regression analyses between baseline fatigue sensation
and change in autonomic nerve activity from the pre-
KPT rest with eyes open condition (baseline) to other
conditions were performed. The change in each absolute
power (ln TP, ln VLF, ln LF and ln HF) and derived
power (LF nu, HF nu and LF/HF) was calculated by sub-
tracting the value during pre-KPT rest with eyes open
from the value during pre-KPT rest with eyes closed,
KPT dual-task session, KPT answer session, post-KPT
rest with eyes open, and post-KPT rest with eyes closed.
Results of multiple regression analyses are shown in
Figure 3. After stepwise selection in the absolute power
variables, a significant negative relation was observed
between VAS score for fatigue and change in ln HF in
post-KPT rest with eyes open (β = −0.408, p = 0.043)
based on a significant regression model (p = 0.043; Fig-
ure 3a). After stepwise selection in the derived power
variables, there was also a positive correlation between
VAS score for fatigue and change in LF/HF ratio in the
KPT dual-task session (β = 0.397, p = 0.036; Figure 3b)
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Figure 2 Changes in autonomic nerve activity induced by the brief cognitive test. (a) Log-transformed low-frequency component power
(ln LF), (b) high-frequency component power (ln HF) and (c) the LF/HF ratio. EOB, eyes open; ECB, eyes closed before; KPT-DS, dual-task session
of the kana pick-out test; KPT-AS, answer session of the kana pick-out test; EOA, eyes open after; ECA, eyes closed after. Values are presented as
the mean and standard error of the mean. *p < 0.05, **p < 0.01, ***p < 0.001, significantly different from the corresponding values. #p < 0.1, trend for
a difference from the corresponding values.
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and post-KPT rest with eyes open (β = 0.417, p = 0.027;
Figure 3c) and post-KPT rest with eyes closed (β = 0.444,
p = 0.018; Figure 3d) conditions based on each signifi-
cant regression model (p < 0.05).

Discussion
During the KPT dual-task session, there was a decrease
in parasympathetic sinus modulation compared with
pre-KPT rest with eyes open (Figure 2b) and fatigue
sensation was associated with the decrease in parasym-
pathetic sinus modulation and increase in sympathetic
sinus modulation in this session (Figure 3b). This rela-
tion between the alteration of autonomic activity and fa-
tigue sensation during the dual task may be related to
interactions among the neural substrates of the KPT, fa-
tigue and autonomic nerve function. We and another
study group have used functional magnetic resonance
imaging to show that the dorsolateral prefrontal cortex
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Figure 3 Correlations between fatigue sensation and change in autonomic nerve activity during the short-duration cognitive test.
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and cingulate cortex are activated during the KPT
[25,26]. We have also used positron emission tomog-
raphy to evaluate regional cerebral blood flow, and
showed that the orbitofrontal cortex is associated with
fatigue sensation assessed by VAS [27]. As for auto-
nomic nerve function, a central autonomic network that
controls sympathetico-vagal balance is comprised of the
orbitofrontal cortex, medial prefrontal cortex, anterior
cingulate cortex, insula, amygdala, bed nucleus of the
stria terminalis, hypothalamus, periaqueductal gray mat-
ter, pons and medulla oblongata [28,29]. The anterior
cingulate cortex plays a particularly crucial role in
the central control of sympathetico-vagal balance [30].
There are anatomical and functional connections be-
tween the dorsolateral prefrontal cortex and medial pre-
frontal cortex, including the anterior cingulate cortex
and the orbitofrontal cortex [31-34]. This indicates that
there are interactions between the activities of task-
dependent regions, fatigue sensation-related regions and
autonomic nerve function-associated regions. Sympathoex-
citatory subcortical threat circuits are normally under the
inhibitory control of the medial prefrontal cortex [35-37].
During the KPT, wider prefrontal areas including the
dorsolateral prefrontal cortex and part of the medial pre-
frontal cortex were more active in the single-task session
than in the dual-task session [26]. More extension activa-
tion of prefrontal regions, which reflect mental effort, is
also related to fatigue during a verbal working memory task
[38]. These results suggest that fatigue which induces
greater prefrontal activity corresponds to mental effort to
accurately answer the questions and results in decreases in
parasympathetic nerve activity and inhibitory capacity for
sympathoexcitatory response.
In the present study, we focused on the difference in

autonomic nerve activity between eyes open and eyes
closed conditions. Previously, sympathetic hyperactivity was
observed in the eyes closed condition after a fatigue-
inducing task had been performed for 30 min [10] and 8 h
[11]. Although sympathetic and parasympathetic sinus
modulation were similar in pre-KPT rest with eyes open
and pre-KPT rest with eyes closed, sympathetic nerve activ-
ity was higher and parasympathetic nerve activity was lower
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in post-KPT rest with eyes open than in post-KPT rest with
eyes closed. Because attention level is different between
eyes open and eyes closed conditions, sympathetic nerve
activity is thought to be higher in eyes open condition than
in the eyes closed condition [15]. However, before perform-
ing the KPT, the extent of the difference in sympathetic
sinus modulation between eyes open and closed conditions
was not observed because the brain network, including the
prefrontal and anterior cingulate cortices, which play an
important role in the regulation of autonomic nerve activity
[39], was not driven; thus, control capacity by these brain
regions was sufficient to inhibit the increase in sympathetic
sinus modulation and decrease in parasympathetic sinus
modulation in the eyes open condition. Because these brain
regions are activated during the KPT [25,26], the increase
in sinus sympathetic modulation and decrease in parasym-
pathetic sinus modulation in the eyes open condition could
not be adequately inhibited after the KPT. Inhibition of
parasympathetic sinus modulation and the correlation be-
tween this activity and fatigue sensation was especially
prevalent in this condition, suggesting that a brief mental
task can be used to evaluate the change in autonomic nerve
activity with fatigue if the eyes open condition is used.
However, fatigue sensation was also associated with a de-
crease in parasympathetic sinus modulation in the post-
KPT rest with eyes closed. Therefore, the extent to which
parasympathetic nerve activity is inhibited in the recovery
phase of the resting state in the eyes-closed condition may
depend on the extent of fatigue.
Some researchers have found a difference in the fatig-

ability of females and males with regard to physical and
muscle fatigue [40,41]. In the case of cognitive fatigue,
performance of the Stroop test under fatigue was lower
in females than in male [42]. In the present study, we re-
cruited only healthy females. This was to simplify and
strengthen the analysis, and because epidemiological
studies have shown that the number of females with
chronic fatigue in the general population is twice that of
males [5,6] and the fatigue level of female university stu-
dents is higher than that of males [7]. In support of our
findings, sympathetico-vagal balance was associated with
fatigue in female volunteers aged from 19–24 years, but
not in male volunteers of the same age [43].
Fatigue-related alterations of autonomic nerve activity

have been reported in patients with chronic fatigue syn-
drome [44], multiple sclerosis [45,46], and primary bil-
iary cirrhosis [47]. Here, we have shown that a 16-min
period of ECG is adequate for evaluating the association
between baseline fatigue sensation and altered auto-
nomic nerve activity during and after a brief cognitive
load. It is possible that this fatigue measurement method
is useful to assess the severity of symptoms and treat-
ment effects in these patients, and the measurement
does not place excessive burden on patients.
Limitations
There are limitations of this study. In order to generalize
our results, further study involving a larger number of
participants is essential. We did not follow the participants’
cycles of menstruation in the present study. Previous re-
ports have reported an association between fatigue and
menstruation [48,49], and future studies should consider
participants’menstruation cycles.

Conclusions
Fatigue sensation was correlated with a decrease in para-
sympathetic sinus modulation during and after a cogni-
tive test lasting 4 min, suggesting that we established a
practical fatigue measurement method that can be used
to assess the association between fatigue sensation and
changes in autonomic nerve activity induced by brief
cognitive testing. This newly developed method may
contribute to evaluating the extent of physiological fa-
tigue in not only healthy people, but also in those with
fatigue-related disorders [50]. In addition, these methods
also might contribute to investigations into the effect of
interventions on recovery from fatigue via normalization
of parasympathetic nerve alterations [51,52].
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