
BioMed CentralBehavioral and Brain Functions

ss
Open AcceResearch
Evidence of inflammatory immune signaling in chronic fatigue 
syndrome: A pilot study of gene expression in peripheral blood
Anne L Aspler1, Carly Bolshin1, Suzanne D Vernon2 and Gordon Broderick*1

Address: 1Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada and 2The 
CFIDS Association of America, Charlotte, North Carolina, 28222, USA

Email: Anne L Aspler - aaspler@ualberta.ca; Carly Bolshin - bolshin@ualberta.ca; Suzanne D Vernon - sdvernon@cfids.org; 
Gordon Broderick* - gordon.broderick@ualberta.ca

* Corresponding author    

Abstract
Background: Genomic profiling of peripheral blood reveals altered immunity in chronic fatigue
syndrome (CFS) however interpretation remains challenging without immune demographic
context. The object of this work is to identify modulation of specific immune functional
components and restructuring of co-expression networks characteristic of CFS using the
quantitative genomics of peripheral blood.

Methods: Gene sets were constructed a priori for CD4+ T cells, CD8+ T cells, CD19+ B cells,
CD14+ monocytes and CD16+ neutrophils from published data. A group of 111 women were
classified using empiric case definition (U.S. Centers for Disease Control and Prevention) and
unsupervised latent cluster analysis (LCA). Microarray profiles of peripheral blood were analyzed
for expression of leukocyte-specific gene sets and characteristic changes in co-expression identified
from topological evaluation of linear correlation networks.

Results: Median expression for a set of 6 genes preferentially up-regulated in CD19+ B cells was
significantly lower in CFS (p = 0.01) due mainly to PTPRK and TSPAN3 expression. Although no
other gene set was differentially expressed at p < 0.05, patterns of co-expression in each group
differed markedly. Significant co-expression of CD14+ monocyte with CD16+ neutrophil (p = 0.01)
and CD19+ B cell sets (p = 0.00) characterized CFS and fatigue phenotype groups. Also in CFS was
a significant negative correlation between CD8+ and both CD19+ up-regulated (p = 0.02) and NK
gene sets (p = 0.08). These patterns were absent in controls.

Conclusion: Dissection of blood microarray profiles points to B cell dysfunction with coordinated
immune activation supporting persistent inflammation and antibody-mediated NK cell modulation
of T cell activity. This has clinical implications as the CD19+ genes identified could provide robust
and biologically meaningful basis for the early detection and unambiguous phenotyping of CFS.

Background
Chronic fatigue syndrome (CFS) is estimated to cost the
American economy over $9 billion each year in lost pro-
ductivity [1]. Among other components chronic immune

cell dysfunction and activation has been demonstrated in
CFS by several groups [2-4]. Though similar in terms of
broad lymphocyte classes CFS and non-fatigued subjects
can be readily distinguished when specific immune cell
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subsets are examined. For example Klimas et al. [2] report a
significant expansion CD26+ (DPP-IV) activated T cells in
CFS subjects. This multifunctional molecule plays a major
role in the regulation, development, maturation and migra-
tion of T helper (Th) and natural killer (NK) cells as well as
in B cell immunoglobulin switching [5]. Moreover abnor-
mal expression of CD26+ is found in autoimmune diseases
[6]. More recently CFS patients were also reported to have
significantly fewer CD3+/CD25- T cells and significantly
more CD20+/CD5+ B cells [7], a subset associated with
auto-antibodies. Significantly fewer CD56+ NK cells were
also observed in recent work by Racciatti et al. [8]. Though
important, flow cytometry results such as these leave many
questions regarding cellular state unanswered. Microarray
profiling of gene expression on the other hand offers a
glimpse of pathway activation in disease pathogenesis at
molecular resolution. Microarray analysis of cDNA profiles
in peripheral blood mononuclear cells (PBMC) have
revealed altered expression in CFS of several immune genes
[9,10] involved in response to oxidative stress, NK cell
activity and elements of antigen processing. Instability in
immune response and restructuring of immune cell signal-
ing under exercise challenge has also been observed [11].
Unfortunately microarray profiling is commonly per-
formed on mixed cell populations producing an average
profile from which it is very difficult to dissect the contribu-
tions of relative cell abundance, cell activation state and
cell-cell signaling. More importantly, this averaging can
obscure significant changes in the state of minority cell sub-
populations.

These challenges notwithstanding, a review of this evidence
strongly suggests that CFS pathogenesis is likely to include
a characteristic immunologic component in at least one
subset of the patient population [12]. However the exact
nature of this immunologic component remains the object
of considerable debate at least in part because of an inabil-
ity to cast gene expression profiles in the useful context of
immune cell demographics. In an attempt to address this
issue methods have been proposed to dissect global gene
expression profiles into discrete elements assignable to bio-
logic processes [13-15]. The assignment of genes to discrete
modules or sets has been successful in several respects. A
first contribution involves simply reducing the dimension-
ality of >55,000 gene expression measures to that of say 10
or so gene sets. The interpretability of results is further
enhanced by associating sets with basic cellular functions.
Finally the numerical robustness is greatly improved
through the averaging of changes in expression over many
genes. In addition gene sets are transportable across micro-
array platforms making it possible to compare studies
based on different technologies.

In this work we explore the use of discrete gene sets in
extracting useful information regarding immune dysfunc-

tion in CFS from gene expression profiles of mixed lym-
phocyte populations. In particular we construct gene sets
that capture elements of abundance and activity assigna-
ble to specific immune cell subsets thereby facilitating
direct integration with flow cytometry results. Data from
a large population-based study of CFS [16] is then exam-
ined for changes of immune set expression across two sep-
arate CFS classification approaches. In addition, patterns
of coordinated expression linking these immune sets were
investigated using simple correlation networks. These net-
works were examined for shifts in topology and point to
patterns of immune signaling in CFS that are consistent
with chronic inflammation. These observations could
constitute a signature of CFS or a component thereof.

Methods
Subjects and diagnostic classes
Recently a dataset for a 2-day in-hospital study of CFS in
the general population of Wichita Kansas was made avail-
able [16]. Referred to as the Wichita Clinical study, this
investigation included a highly comprehensive spectrum
of detailed clinical and laboratory measures and PBMC
expression profiles for 20,000 genes. From this dataset a
final analysis group of 111 female subjects was obtained
by excluding the few male subjects and subjects with con-
founding medical or psychiatric conditions. Subjects in
this dataset were classified as CFS using the CDC Symp-
tom Inventory, Multidimensional Fatigue Inventory
(MFI) and Short Form 36 (SF-36) instruments [17,18].
This classification will be referred to as "empiric" and
resulted in 39 CFS, 37 non- fatigued (NF), and 35 subjects
with insufficient symptoms or fatigue (ISF). A second clas-
sification proposed by Vollmer-Conna and colleagues
[19] used latent class analysis (LCA) of 440 clinical and
biological measurements to delimit 5 fatigue classes, a
non-fatigued class and 2 unassigned individuals. Obese
subjects with prominent post-exercise fatigue, hypnoea
and disturbed sleep formed Class 1. Reasonably healthy
subjects with few symptoms, low depression scores and
good sleep composed Class 2. Subjects in Class 3 resem-
bled those in class 1 but also displayed low heart rate var-
iability during sleep and low 24-hour cortisol levels. Class
4 was populated with healthier, less depressed individuals
having restful sleep but suffering muscle pain. Finally
Classes 5 and 6 both captured less obese but highly symp-
tomatic and depressed individuals with prominent post-
exercise fatigue. Individuals in Class 6 also displayed dis-
turbed sleep with low heart rate variability and low corti-
sol. The patient demographics for each of these
classification systems are summarized in Table 1 and the
alignment between these systems is described in Table 2.
The collection and processing of PBMCs including hybrid-
ization to MWG microarrays (MWG Biotech, Ebersberg,
Germany) are described in Vernon and Reeves [16].
Details of the microarray data preprocessing including
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normalization, outlier detection and false discovery cor-
rection are available in Broderick et al. [9].

Gene set development
Extracting elements that represent the abundance and
activity of a specific leukocyte subset was approached by
identifying discrete sets of genes that are uniquely or pre-
dominantly expressed in a given cell type [20-22]. Cur-
rently discrete gene sets offer the simplest and most
immediately accessible method for analysis across micro-
array technological platforms. We constructed a number
of gene sets a priori for CD4+ T cells, CD8+ T cells, CD19+
B cells, CD14+ monocytes and CD16+ neutrophils using
data collected on Affymetrix microarrays (Affymetrix,
Santa Clara, CA, USA) by Lyons et al. [23]. Of the 12,022
genes surveyed, 2,641 were differentially expressed
between individual lymphocyte subsets. Of these original
2,641 distinguishing genes, 268 were present on the

MWG microarrays used in the Wichita Clinical study. We
further dissected these subset-specific profiles into dis-
crete non-overlapping sets composed of genes at least 2-
fold up-regulated or 2-fold down-regulated preferentially
in each cell lineage. An additional gene set was defined for
NK cell activity and regulatory T cell activity was estimated
from the expression of the FoxP3 gene (AF277993). Indi-
vidual MWG gene probes belonging to each immune gene
set as well as NCBI gene annotation and PANTHER func-
tional annotation [24,25] are listed in the supplementary
data file [Additional file 1].

Statistical analysis
The aggregate expression Ga of each gene set a was com-
puted as the average of the Ln-transformed expression
Ln(gi, a) of each gene i across the k member genes in the set
(Equation 1). In a first level of analysis a classical Wil-
coxon non-parametric test was used to evaluate the differ-

Table 1: Demographic data for 111 subjects from the Wichita clinical study

Empiric Classification LCA Classification

CFS
(n = 39)

IFS
(n = 35)

Controls
(n = 37)

LCA-1
(n = 23)

LCA-3
(n = 17)

LCA-4
(n = 11)

LCA-5
(n = 14)

LCA-6
(n = 11)

LCA-0/2
(n = 35)

Mean Age (SD) 51.4 (8.2) 50.3 (8.2) 51.6 (9.0) 50.9 (7.6) 54.7 (5) 44.4 (8.7) 48.2 (10.2) 55.8 (3.4) 51.3 (9)
Mean Years Ill (SD) 16.7 (11.0) 14.4 (10.0) 2.8 (5.0) 15.5 (10.7) 11.3 (4) 16.0 (12.3) 16.8 (10.5) 16.4 11.2 14.3 (12.9)
Race [n (%) ]

White 35 (90.0) 32 (91.4) 36 (97.3) 21 (91) 17 (100) 10 (90.9) 11 (78.6) 11 (100) 33 (94.3)
Black 1 (2.6) 3 (8.6) 1 (2.7) 1 (4.4) 0 (0) 1 (9.1) 1 (7.1) 0 (0) 2 (5.7)
Multiple Race 2 (5.1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (14.3) 0 (0) 0 (0)
Other 1 (2.6) 0 (0) 0 (0) 1 (4.4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Onset Type
Gradual 32 (82.0) 28 (80.0) 10 (27.0) 18 (78.3) 14 (82.4) 9 (81.8) 11 (78.6) 10 (90.9) 8 (22.9)
Sudden 6 (15.4) 3 (8.6) 0 (0.0) 3 (13) 1 (5.9) 1 (9.1) 3 (21.4) 1 (9.1) 0 (0.0
Undetermined 1 (2.6) 4 (11.4) 27 (73.0) 2 (8.7) 2 (11.8) 1 (9.1) 0 (0) 0 (0) 27 (77.1)

BMI [n (%) ]
<25 5 (13.8) 10 (28.6) 7 (18.9) 0 (0) 4 (23.5) 8 (72.7) 3 (21.4) 3 (27.3) 4 (11.4)
25–30 20 (51.3) 14 (40) 18 (48.7) 9 (39.1) 6 (35.3) 3 (27.3) 9 (64.3) 7 (63.6) 18 (51.4)
>30 14 (35.9) 11 (31.4) 12 (32.4) 14 (60.9) 7 (41.2) 0 (0) 2 (14.3) 1 (9.1) 13 (37.1)

1 SD is standard deviation

Table 2: A cross-reference of systems for diagnostic assignment

Empiric Classification (CFS research case definition)

CFS ISF Controls
LCA Category LCA Class Description (n = 39) (n = 35) (n = 37)

n (%) n (%) n (%)

Controls (0–2) Well (n = 33) or Unassigned (n = 2) 1 (2) 0 (0) 34 (91)
1 Obese hypnoea (n = 23) 15 (38) 8 (23) 0 (0)
3 Obese hypnoea and stressed (n = 17) 5 (13) 11 (31) 1 (3)
4 Interoception – muscle pain (n = 11) 1 (3) 9 (26) 1 (3)
5 Interoception depression (n = 14) 10 (26) 4 (11) 0 (0)
6 Multisymptomatic, depressed, stressed (n = 11) 7 (18) 3 (9) 1 (3)
Page 3 of 13
(page number not for citation purposes)



Behavioral and Brain Functions 2008, 4:44 http://www.behavioralandbrainfunctions.com/content/4/1/44
ential expression of immune gene sets for both
classification systems. As suggested by Efron and Tib-
shirani [15] the performance of these gene sets was also
compared to that obtained with randomly populated sets
of the same size. A null distribution was computed from
the analysis of 1000 instances of random gene selections
and 1000 random permutations of the diagnostic labels.

To examine the patterns of association linking immune
gene sets simple linear association networks were con-
structed using the Pearson correlation coefficient ra, b as
the metric describing similarity in the expression of gene
set a with that of gene set b. Statistical significance of cor-
relation was assessed using the ta, b statistic in Equation
(2). This statistic has a Student's t-distribution with
degrees of freedom n-2 under the null hypothesis of no
correlation [26], where n is the number of microarray
measurements. Ca, b is the covariance in the expression of
gene set a with gene set b and E() is the expected value
operator or the mean.

Where,

A cutoff for the resulting probability pa, b (t > ta, b), above
which we accept the null hypothesis, can be established in
a variety of ways [27]. It should be noted however that
these require specific assumptions regarding network
topology such as network edge sparseness or the appear-
ance of highly cliquish disconnected sub-networks. As
such they are generally more relevant to the study of large
networks. Instead we examined the dependency of the
network size S, or the sum of the edge weights wa, b on the
choice of threshold p-value (Equation 3). We compared
curves obtained for NF and CFS networks, identifying
threshold p-values where networks differed primarily in
structure from those where they differed in both structure
and size.

Results
Alignment of empiric and LCA classifications
A cross tabulation of the empiric classification and LCA
classification is presented in Table 2. There was good
alignment of non-fatigued subjects with 90% of empiric
NF controls residing in LCA classes 0 (Well) and 2 (Unas-
signed). Together LCA classes 1 (40%) and 5 (26%) con-
tained two thirds of the subjects assigned to the empiric
CFS class. However ISF subjects were distributed almost
equally across LCA classes 1 (23%), 3 (31%), and 4
(26%). Conversely most LCA class 3 and 4 subjects were
identified as ISF and most subjects in LCA classes 1, 5 and
6 were assigned an empiric CFS classification.

Differential expression of a priori defined immune cell 
gene sets
In a first level of analysis the differential expression of
immune gene sets across disease phenotypes and control
groups for both classification systems was evaluated.
Results in Table 3 show that the median expression of the
CD19+ B cell up-regulated gene set was significantly lower
in CFS (p = 0.01) and ISF (p = 0.05) subjects when com-
pared to the NF group. Expression of this gene set was also
significantly repressed in LCA class 3 (p = 0.04) and mar-
ginally so in LCA class 5 (p = 0.09) when compared to
control subjects in LCA classes 0 and 2. Recall that 11 of
17 cases in LCA class 3 were also designated ISF. Similarly
10 of the 14 LCA class 5 cases were designated CFS. NK
gene set expression was marginally increased in the CFS
group (p = 0.07). Though not significant the null proba-
bility for NK cell expression was lowest among the LCA
classes for LCA-3 (p = 0.11). Finally expression of the T
regulatory set (FoxP3) was marginally repressed in LCA
class 1 (p = 0.09) which contained 40% of the CFS sub-
jects though no significant difference was found for the
larger CFS group (p = 0.31).

The performance of these gene sets was compared to that
obtained with randomly populated sets of the same size as
well as by random classification assignment of each sub-
ject. Null distribution results indicated that both the
CD19+ B cell (up-regulated) and NK cell gene sets per-
formed significantly better than random sets of equivalent
size in discriminating CFS from NF (p < 0.05) (Figure 1).
Performance of the T regulatory gene set (FoxP3) was mar-
ginal at best (p~0.15) in terms of uniqueness in differen-
tial expression. In addition a detailed analysis of
individual genes in the CD19+ up-regulated set indicated
that no single gene was differentially expressed even
though the parent set was expressed at the p = 0.01 level.
This reaffirms that high levels of measurement noise can
be effectively managed by aggregating genes into biologi-
cally relevant sets. Details of this analysis are listed in
Table 4 and illustrated graphically in Figure 2 and
Figure 3.
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Emergence of characteristic patterns of association 
between immune gene sets in CFS
Conventional analysis of microarray data remains focused
on the detection of differentially expressed genes or gene
sets. However it is important to realize that genes
expressed at similar levels across patient groups may still
play an important role in the disease process. To examine

the patterns of association linking immune gene sets sim-
ple linear correlation networks were constructed. Results
in Figure 4 show network size for the empiric NF and CFS
classes as a function of cutoff p-value for edge weight sig-
nificance. Both NF and CFS networks were identical in
overall size at a cutoff p-value of 0.05. Changes at this
level of edge weight significance consisted therefore of a

Cumulative probability plot of Δ differential expression of CFS versus NF for random gene sets similar in size to the CD19+ B cell up-regulated gene set and the NK cell gene setFigure 1
Cumulative probability plot of Δ differential expression of CFS versus NF for random gene sets similar in size 
to the CD19+ B cell up-regulated gene set and the NK cell gene set.
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Table 3: Changes in median expression and corresponding null probability values () for pair-wise comparison of disease classes and the 
non-fatigued control group under both classification systems

3-Class (NF Controls) 7-Class (Controls = LCA-0 U LCA-2)

Cell Type Expression 
Level +/-

Number of 
genes

ISF CFS LCA-1 LCA-3 LCA-4 LCA-5 LCA-6

CD8 T cells Up-regulated 5 0.06 (0.43) 0.01 (0.75) 0.06 (0.52) 0.00 (0.64) 0.04 (0.24) 0.01 (0.80) 0.23 (0.27)
Down-
regulated

CD14 
Monocytes

Up-regulated 78 0.04 (0.29) 0.05 (0.83) 0.02 (0.62) 0.11 (0.15) 0.09 (0.42) 0.02 (0.94) 0.05 (0.33)

Down-
regulated

CD16 
Neutrophils

Up-regulated

Down-
regulated

185 0.02 (0.20) 0.02 (0.25) 0.02 (0.29) 0.00 (0.65) 0.03 (0.25) 0.02 (0.50) 0.04 (0.30)

CD19 B cells Up-regulated 6 -0.17 (0.05) -0.28 (0.01) -0.27 (0.29) -0.31 (0.04) -0.12 (0.13) -0.25 (0.09) -0.17 (0.14)
Down-
regulated

2 -0.22 (0.33) -0.22 (0.29) -0.18 (0.19) 0.07 (0.71) 0.10 (0.76) -0.08 (0.78) -0.08 (0.16)

CD4/8/25 T 
reg cells

NA 1 -0.23 (0.19) -0.23 (0.31) -0.35 (0.09) 0.19 (0.37) -0.25 (0.11) -0.17 (0.32) 0.28 (0.40)

NK cells NA 4 0.09 (0.92) 0.30 (0.07) 0.19 (0.20) 0.32 (0.11) 0.12 (0.68) 0.12 (0.45) -0.01 (0.57)
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re-organization of edges only. The curves in Figure 4
diverge at p~0.10 and maintain a similar offset form one
another as p-value increases. As a result comparisons of
network topology conducted at the p < 0.10 level included
edge re-assignment as well as the addition of new edges to

the CFS network. Topologies emerging at both p < 0.05
and p < 0.10 thresholds were examined as they contain
complementary information. Detailed results of pair-wise
correlation between gene sets may be found in Table 5 for

Box and whisker plot for the expression of each gene in the CD19+ up-regulated gene set in each of the 3 empiric illness classesFigure 2
Box and whisker plot for the expression of each gene in the CD19+ up-regulated gene set in each of the 3 
empiric illness classes. Boxes indicate the lower quartile, median and upper quartile values. Whiskers are located at 
extreme values within 1.5 times the inter-quartile range from the ends of each box. Outliers are displayed with a red '+'. Each 
plot is annotated with the null probability for the difference in median expression between the NF and CFS subject groups.
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Table 4: Changes in median expression and corresponding null probability values () for pair-wise comparison of disease classes and the 
non-fatigued control group for each individual gene in the CD19+ B cell Up-regulated gene set

3-Class (NF Controls) 7-Class (Controls = LCA-0 U LCA-2)

Gene ISF CFS LCA-1 LCA-3 LCA-4 LCA-5 LCA-6

SP140 -0.03 (0.60) 0.02 (0.49) -0.07 (0.43) 0.10 (0.60) 0.01 (0.72) -0.08 (0.29) 0.07 (0.92)
CD22 -0.16 (0.10) -0.09 (0.31) -0.14 (0.17) -0.58 (0.02) -0.30 (0.04) 0.02 (0.35) 0.05 (0.70)
QRSL1 -0.03 (0.95) -0.21 (0.91) 0.29 (0.28) -0.10 (0.70) 0.23 (0.50) -0.16 (0.89) -0.49 (0.42)
PTPRK -0.12 (0.55) -0.21 (0.18) -0.12 (0.76) -0.07 (0.82) -0.22 (0.68) -0.20 (0.17) -0.07 (0.64)
P2RY10 0.01 (0.21) -0.02 (0.51) 0.08 (0.99) -0.08 (0.06) 0.28 (0.82) 0.11 (0.94) 0.20 (0.33)
TSPAN3 -0.10 (0.54) -0.20 (0.19) -0.24 (0.39) -0.17 (0.83) 0.13 (0.38) -0.08 (0.83) -0.02 (0.82)
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the empiric classification system and Tables 6 and 7 for
the LCA classification system.

Heat maps depicting the edge weights ra, b linking gene
sets are presented in Figure 5 for both empiric and LCA
classes. The LCA control classes 0 and 2 exhibited a pat-
tern of gene set co-expression at the p < 0.10 identical to
that of the empiric NF group though in the latter this pat-
tern was also retained at the p < 0.05 level. In both the NF
and LCA-0/LCA-2 networks CD 19+ B cell up-regulated
and down-regulated gene sets correlated tightly behaving
as one set (r = 0.43, p = 0.008). T regulatory and NK cell
gene sets both supported significant positive interaction
with one or both of the CD19+ B cell sets. In addition
CD8+ T cell activity and CD14+ monocyte activity were
significantly antagonistic. In contrast the network
obtained for the CFS subjects displayed a shift in interac-
tions towards the upper left hand corner of the heat map.
Indeed significant interactions appeared linking the
expression of the CD14+ monocyte gene set with that of
the B cell (CD19+ up-regulated) and the CD16+ neu-
trophil gene sets. The neutrophil set also shared signifi-
cant co-expression with the CD8+ T cell gene set (p <
0.05) in CFS. Interestingly interactions with the neu-

trophil gene set were completely absent in NF even at the
p < 0.10 level. Also apparent in CFS was the emergence of
a significant negative correlation between the expression
of CD8+ and CD19+ up-regulated gene sets (p = 0.02).
Moreover CD19+ B cells appeared altered with up and
down-regulated sets no longer maintaining a strong direct
correlation in ISF or CFS. Interaction with NK cell gene set
expression was also a distinguishing feature in particular
for ISF. Instead of appearing as a transitional state
between NF and CFS, ISF exhibited a distinct co-expres-
sion pattern characterized by a significant interaction of
NK cell and monocyte gene sets (p < 0.05). Contrary to
NF, the NK and CD19+ down-regulated gene sets corre-
lated negatively (p < 0.10) in ISF.

In much the same way as the ISF group, several of the LCA
groups were characterized by a lack of coordinated activity
between immune gene sets. Indeed no significant correla-
tions existed for LCA-4 even at the p < 0.10 level. This was
also true of LCA-3 and LCA-6 classes at the p < 0.05 level.
Though also quite sparse, heat maps for LCA-1 and LCA-
5 each recovered specific features of the CFS and ISF heat
maps. LCA-1 demonstrated a significant positive correla-
tion (p < 0.05) between CD14+ monocyte and CD16+
neutrophil sets, a CFS feature. At the p < 0.10 level the
same heat map showed a negative correlation between the
NK and CD19+ B cell down-regulated set, an ISF feature.
Unique to LCA-1 was a positive correlation between T reg
(FoxP3) and CD14+ monocyte gene set expression (p <
0.10), a trait not identified in CFS and actually reversed in
LCA-3. Similarly the heat map for LCA-5 contained 2 fea-
tures specific to the CFS group, namely a strong positive

Network size S defined as the sum of all network edge weights (Equation 3) and plotted as a function of cutoff p-value for the empiric NF and CFS classesFigure 4
Network size S defined as the sum of all network 
edge weights (Equation 3) and plotted as a function 
of cutoff p-value for the empiric NF and CFS classes.
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correlation linking CD19+ B cell with CD14+ monocyte
up-regulated sets (p < 0.05) along with a strong negative
correlation linking the former with CD8+ gene set expres-
sion. These 2 features were not shared with the LCA-1
group. These results reaffirmed the strong links between
the CFS subject group and LCA classes 1 and 5 in addition
to suggesting that immune set co-expression might offer
insight into the distinct nature of these apparent sub-
classes of CFS.

Discussion
In this work we dissected PBMC gene expression profiles
into components that were preferentially expressed in sev-
eral isolated lymphocyte subpopulations. We also used 2
systems to stratify subjects into illness groups. The LCA
class structure was inferred directly from a comprehensive
set of clinical and biological indicators. All indicators
were equally weighted and contrary to common practice
no subset was assigned greater relevance a priori. In con-
trast the empiric classification which was based on a con-
sensus of opinions from expert clinicians. Results confirm
strong links between both systems with the LCA classifica-

tion providing additional insight into potential subclasses
of CFS. The commonalities between these classification
systems are readily observed in the patterns of gene set co-
expression. Indeed the empiric CFS group seems to
present an aggregation of the gene set co-expression pat-
terns observed in LCA classes 1 and 5. However, the differ-
ential expression of gene sets only achieves statistical
significance in the case of the coarser empiric classes with
the larger group sizes providing better noise reduction.
Specifically in the empiric CFS class we found a significant
decrease in the median expression for a set of 6 genes pref-
erentially up-regulated in isolated CD19+ B cells com-
pared to non-fatigued controls. Expression of this CD19+
B cell up-regulated gene set also discriminated ISF from
controls at 0.05 confidence level. In a recent study of CFS
occurrence both in the presence and absence of viral infec-
tion Racciati et al. [8] found no significant differences in
CD19+ cell abundance. Robertson et al. [7] recently
reported significantly higher abundance of CD20+/CD5+
B cells, a subset associated with the production of auto-
antibodies, in patients with depression. These findings
together with our observations of depressed CD19+ gene

Table 5: Detailed results of gene set correlation ra, b(null probability pa, b) for empiric classes.

CFS CD16+ Down CD14+ Up CD19+ Up CD19+ Down CD8+ Up T reg NK cell

CD16+ Down 0.43 (0.01) 0.13 (0.42) 0.14 (0.39) 0.33 (0.04) 0.27 (0.10) -0.25 (0.12)
CD14+ Up 0.54 (0.00) 0.29 (0.07) -0.12 (0.46) 0.18 (0.26) -0.08 (0.61)
CD19+ Up 0.16 (0.33) -0.38 (0.02) 0.12 (0.46) 0.15 (0.36)
CD19+ Down 0.15 (0.37) -0.23 (0.16) -0.04 (0.79)
CD8+ Up 0.00 (1.00) -0.29 (0.08)
T reg 0.02 (0.88)
NK cell

ISF CD16+ Down CD14+ Up CD19+ Up CD19+ Down CD8+ Up T reg NK cell

CD16+ Down 0.13 (0.46) 0.11 (0.51) -0.13 (0.47) -0.16 (0.37) 0.19 (0.27) 0.09 (0.62)
CD14+ Up -0.24 (0.17) 0.09 (0.62) -0.26 (0.13) -0.11 (0.52) 0.49 (0.00)
CD19+ Up -0.08 (0.64) 0.02 (0.91) 0.26 (0.13) -0.03 (0.88)
CD19+ Down 0.22 (0.21) 0.00 (0.99) -0.30 (0.08)
CD8+ Up 0.17 (0.33) -0.26 (0.13)
T reg -0.04 (0.80)
NK cell

NF CD16+ Down CD14+ Up CD19+ Up CD19+ Down CD8+ Up T reg NK cell

CD16+ Down -0.10 (0.55) 0.11 (0.53) 0.08 (0.64) -0.27 (0.11) 0.15 (0.38) -0.01 (0.96)
CD14+ Up 0.12 (0.49) -0.06 (0.74) -0.38 (0.02) -0.10 (0.54) 0.02 (0.91)
CD19+ Up 0.43 (0.01) -0.02 (0.90) 0.37 (0.02) 0.25 (0.13)
CD19+ Down 0.05 (0.79) 0.37 (0.02) 0.35 (0.04)
CD8+ Up -0.10 (0.58) 0.20 (0.24)
T reg 0.20 (0.23)
NK cell
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expression and altered association between up and down-
regulated B cell functions would suggest that the function
of these cells might be compromised in CFS subjects. Cole
et al. [28] reported a selective reduction of mature B lym-
phocyte function in subjects who experienced chronic
high levels of social isolation including suppression of
several transcription factors involved B cell differentiation
such as Ikaros/ZNF1A1. Genes encoding for members of
the zinc finger protein family were also identified in pre-
vious work by this group as prominent contributors to the
CFS symptom space [9]. A closer look at the 6 genes that
constitute the CD19+ up-regulated set showed that the
PTPRK and TSPAN3 genes, both associated with immune
cell adhesion and development, were the most sup-
pressed. Down-regulation of PTPRK, a TGF-β target gene,
is known to be down-regulated by the Epstein-Barr virus
(EBV) [29], an infectious agent known to trigger CFS
[30,31]. Down-regulation of TGF-β has been reported in
CFS by Tomoda et al. [32].

NK cell activity is suppressed in CFS [33] and this
decreased cytotoxity has been associated with reduced

intracellular perforin [34]. In this work we observe an
increased expression of the NK cell gene set. Of the 4
genes used to capture NK cell function the expression of
NKG2A/C (NM 002260) was most increased. The binding
of NKG2A to its natural ligand, human non-classic class I
leukocyte antigen (HLA) E, is known to induce its immu-
noreceptor tyrosine-based inhibition motif (ITIM) and
suppress cytotoxic cell effector activity [35]. Moreover
NKG2A is also known to be co-expressed on activated Th2
but not Th1 lymphocytes [36]. A bias towards Th2-type
immune response in CFS patients has also been suggested
on the basis of intracellular T cell cytokine profiles by
Skowera et al. [37]. Interestingly this also aligns with
altered expression of the PTPRK gene mentioned above as
Asano et al. [38] report impaired Th1 function with
PTPRK deletion in rats. Therefore our observations sup-
ported findings of increased suppression of cytotoxic
activity in CFS and hinted at increased Th2 activity though
the latter were not specifically addressed in this analysis.

Neutrophils for their part are only found at trace and con-
taminating amounts in most PBMC preparations [39] so

Table 6: Detailed results of gene set correlation ra, b(null probability pa, b) for LCA-0/2, 1, 3 classes.

LCA-0/2 CD16+ Down CD14+ Up CD19+ Up CD19+ Down CD8+ Up T reg NK cell

CD16+ Down -0.17 (0.33) 0.15 (0.39) 0.09 (0.62) -0.19 (0.27) 0.09 (0.62) -0.10 (0.56)
CD14+ Up 0.14 (0.41) -0.03 (0.88) -0.30 (0.08) -0.11 (0.52) 0.00 (0.98)
CD19+ Up 0.43 (0.01) -0.04 (0.82) 0.40 (0.02) 0.19 (0.28)
CD19+ Down -0.01 (0.93) 0.39 (0.02) 0.30 (0.08)
CD8+ Up -0.05 (0.77) 0.06 (0.73)
T reg 0.04 (0.82)
NK cell

LCA-1 CD16+ Down CD14+ Up CD19+ Up CD19+ Down CD8+ Up T reg NK cell

CD16+ Down 0.55 (0.01) -0.03 (0.91) 0.16 (0.47) 0.28 (0.20) 0.16 (0.46) -0.25 (0.25)
CD14+ Up 0.25 (0.26) 0.20 (0.37) -0.03 (0.90) 0.36 (0.10) -0.04 (0.84)
CD19+ Up -0.14 (0.53) -0.21 (0.34) 0.13 (0.55) 0.06 (0.77)
CD19+ Down 0.33 (0.13) -0.19 (0.38) -0.41 (0.05)
CD8+ Up 0.09 (0.69) -0.32 (0.14)
T reg -0.02 (0.91)
NK cell

LCA-3 CD16+ Down CD14+ Up CD19+ Up CD19+ Down CD8+ Up T reg NK cell

CD16+ Down -0.13 (0.61) 0.07 (0.80) -0.18 (0.49) -0.20 (0.45) 0.35 (0.16) -0.31 (0.22)
CD14+ Up -0.31 (0.23) 0.15 (0.57) -0.36 (0.16) -0.45 (0.07) 0.15 (0.56)
CD19+ Up 0.37 (0.14) -0.06 (0.82) 0.29 (0.26) -0.07 (0.78)
CD19+ Down 0.20 (0.44) 0.15 (0.56) 0.18 (0.48)
CD8+ Up 0.21 (0.42) -0.05 (0.84)
T reg 0.19 (0.47)
NK cell
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it is interesting to note that the neutrophil gene set arose
as a core element in the emergence of coordinated
immune activity. In particular the CD16+ neutrophil gene
set and the CD14+ monocyte gene set shared significant
co-expression. Not only do these arise from the same
hematopoietic CD34+ progenitor cell [40] but since the
immune community is highly integrated the presence or
absence of neutrophils will also be mirrored in the state of
the remaining cell population. The CD14+ monocyte set
also shared significant co-expression with the CD19+ B
cell gene sets. Together this neutrophil-monocyte-B cell
immune interaction triad is highly consistent with a
model of chronic inflammation proposed by Lefkowitz
and Lefkowitz [41]. According to this model once an
event initiates inflammation, neutrophils are among the
first cells to arrive at the site. They degranulate releasing
MPO into the microenvironment which together with
iMPO binds to macrophage MMR receptor and induces
release of TNF-α. The latter functions in an autocrine
manner and along with iMPO initiates a cytokine cascade

(IL-1, IL-6, IL-8, GM-CSF). IL-8 attracts more neutrophils
and together with GM-CSF causes these to once again
degranulate. With the corresponding release of additional
MPO, the cycle starts once again. The TNF-α initiated cas-
cade induces IL-6 which is used by B cells for maximum
antibody secretion usually IgM. In addition to the present
analysis, a preliminary examination of cytokine data col-
lected in the Wichita study pointed to an increase in TNF-
α in CFS subjects (data not shown) as documented previ-
ously by Moss et al. [42].

In addition to this core network, we also observed that
CD8+ T cell set expression correlated negatively with that
of the NK and CD19+ up-regulated B cell sets. In one pos-
sible mechanism linking these three cell types, IgG anti-
bodies binding to GD3 on the surface of CD4+ and CD8+
T cells could elicit signals for proliferation of these subsets
and expression of the IL-2 receptor CD25. NK cells have
been shown to selectively inhibit this antibody-mediated
proliferation of CD8+ T cells by Claus et al. [43] perhaps

Table 7: Detailed results of gene set correlation ra, b(null probability pa, b) for LCA-4, 5, 6 classes.

LCA-4 CD16+ Down CD14+ Up CD19+ Up CD19+ Down CD8+ Up T reg NK cell

CD16+ Down 0.41 (0.21) -0.02 (0.96) -0.09 (0.80) -0.14 (0.68) 0.00 (0.99) 0.14 (0.67)
CD14+ Up -0.05 (0.88) -0.13 (0.71) -0.12 (0.73) -0.01 (0.98) -0.28 (0.41)
CD19+ Up -0.21 (0.53) 0.09 (0.78) 0.28 (0.40) 0.13 (0.71)
CD19+ Down 0.44 (0.18) 0.05 (0.89) -0.48 (0.13)
CD8+ Up 0.19 (0.57) -0.04 (0.91)
T reg -0.11 (0.75)
NK cell

LCA-5 CD16+ Down CD14+ Up CD19+ Up CD19+ Down CD8+ Up T reg NK cell

CD16+ Down 0.44 (0.12) 0.35 (0.22) 0.05 (0.87) 0.32 (0.27) 0.17 (0.56) 0.04 (0.90)
CD14+ Up 0.86 (0.00) 0.23 (0.44) -0.40 (0.16) 0.35 (0.21) 0.40 (0.16)
CD19+ Up 0.15 (0.60) -0.48 (0.08) 0.35 (0.22) 0.36 (0.20)
CD19+ Down -0.16 (0.58) 0.16 (0.60) -0.16 (0.59)
CD8+ Up -0.22 (0.45) -0.12 (0.69)
T reg 0.07 (0.82)
NK cell

LCA-6 CD16+ Down CD14+ Up CD19+ Up CD19+ Down CD8+ Up T reg NK cell

CD16+ Down 0.34 (0.30) -0.02 (0.95) 0.20 (0.55) -0.15 (0.65) 0.45 (0.16) 0.23 (0.50)
CD14+ Up 0.10 (0.76) 0.57 (0.07) -0.14 (0.69) -0.40 (0.22) 0.20 (0.56)
CD19+ Up 0.35 (0.30) -0.33 (0.32) -0.43 (0.18) 0.31 (0.35)
CD19+ Down 0.15 (0.67) -0.31 (0.36) 0.32 (0.33)
CD8+ Up 0.11 (0.74) -0.46 (0.16)
T reg 0.07 (0.84)
NK cell

1 SD is standard deviation
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through down-regulation of autologous mixed lym-
phocyte reaction (MLR). This basic analysis of immune
gene set co-expression points therefore to the existence of
immune signaling processes in CFS that adhere to at least
one known mechanism of chronic inflammation and sup-
port possible antibody-mediated NK cell modulation of T
cell activity. Furthermore association networks con-

structed for LCA classes 1 and 5 suggested that B cell
involvement in these processes may serve as factor for dis-
criminating between distinct subsets of CFS subjects.

Although several very plausible immune response mecha-
nisms were recovered by this analysis it must be empha-
sized that the use of discrete gene sets has several

Heat maps of gene set co-expression expressed as linear correlation coefficient ra, b at cutoff significance pa,b<0.10 (�) and at cutoff significance pa,b <0.05 (l) for empiric classes for non-fatigued (NF) controls, insufficient fatigue symptoms (ISF) and CFS as well as for LCA control classes (LCA-0, 2) and for all LCA disease classesFigure 5
Heat maps of gene set co-expression expressed as linear correlation coefficient ra, b at cutoff significance 
pa,b<0.10 (�) and at cutoff significance pa,b <0.05 (l) for empiric classes for non-fatigued (NF) controls, insuffi-
cient fatigue symptoms (ISF) and CFS as well as for LCA control classes (LCA-0, 2) and for all LCA disease 
classes.
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limitations. In particular it becomes increasingly difficult
to identify genes that are exclusively or even predomi-
nantly expressed in specific cell lineages when these share
many commonalities of function and goal. This issue was
reflected in by the small size of the gene sets identified in
this work from lymphocyte subset expression profiles. An
approach that promises to be more robust and more
revealing still involves the direct use of the genome-wide
expression for these cell populations. This remains an
active area of research [44]. However, even this simple
analysis points to dramatic differences in immune net-
work topology and cell signaling in CFS and we expect
these differences to be largely conserved in more elaborate
analyses. Furthermore the methodology outlined and
issues raised in this work demonstrate the importance of
developing approaches that effectively integrate flow
cytometry with cytokine and gene expression profiling. In
particular it underscores the importance of looking
beyond differential expression of individual components
towards changes in their patterns of coordinated activity
and formally recognizing the network properties of the
immune system.
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