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Abstract 

Background: Optimal stimulation theory and moderate brain arousal (MBA) model hypothesize that extra-task 
stimulation (e.g. white noise) could improve cognitive functions of children with attention-deficit/hyperactivity dis-
order (ADHD). We investigate benefits of white noise on attention and inhibition in children with and without ADHD 
(7–12 years old), both at behavioral and at neurophysiological levels.

Methods: Thirty children with and without ADHD performed a visual cued Go/Nogo task in two conditions (white 
noise or no-noise exposure), in which behavioral and P300 (mean amplitudes) data were analyzed. Spontaneous eye-
blink rates were also recorded and participants went through neuropsychological assessment. Two separate analyses 
were conducted with each child separately assigned into two groups (1) ADHD or typically developing children 
(TDC), and (2) noise beneficiaries or non-beneficiaries according to the observed performance during the experiment. 
This latest categorization, based on a new index we called “Noise Benefits Index” (NBI), was proposed to determine a 
neuropsychological profile positively sensitive to noise.

Results: Noise exposure reduced omission rate in children with ADHD, who were no longer different from TDC. 
Eye-blink rate was higher in children with ADHD but was not modulated by white noise. NBI indicated a significant 
relationship between ADHD and noise benefit. Strong correlations were observed between noise benefit and neu-
ropsychological weaknesses in vigilance and inhibition. Participants who benefited from noise had an increased Go 
P300 in the noise condition.

Conclusion: The improvement of children with ADHD with white noise supports both optimal stimulation theory 
and MBA model. However, eye-blink rate results question the dopaminergic hypothesis in the latter. The NBI evi-
denced a profile positively sensitive to noise, related with ADHD, and associated with weaker cognitive control.
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Background
Attention-deficit/hyperactivity disorder (ADHD) is a 
highly prevalent developmental disorder that affects 
about 5  % of school-aged children and adolescents [1–
4]. These children typically exhibit pervasive behavioral 

symptoms of hyperactivity, inattention and impulsiv-
ity [1], which substantially affect their quality of life (for 
a review, see [5]). Moreover, these symptoms are asso-
ciated with adverse educational [6], interpersonal [7], 
and occupational outcomes [8]. Furthermore, deficits in 
attention, cognitive and executive functioning are con-
sidered as core behavioral symptoms in ADHD and are 
concerned in most contemporary ADHD models [9]. 
The most prominent deficits seen in ADHD are response 
inhibition [10], inattention (vigilance), working memory, 

Open Access

Behavioral and
Brain Functions

*Correspondence:  sbaijot@ulb.ac.be 
†Cécile Colin and Nicolas Deconinck contributed equally to this work
1 Center for Research in Cognition and Neurosciences (CRCN), Université 
Libre de Bruxelles (ULB), Campus du Solbosch CP 191, Avenue F.D. 
Roosevelt 50, CP 151, 1050 Brussels, Belgium
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12993-016-0095-y&domain=pdf


Page 2 of 13Baijot et al. Behav Brain Funct  (2016) 12:11 

planning [11] and reaction time (RT), particularly RT 
variability [12].

While stimulant medication has been shown to 
improve behavioral symptoms [13] and school perfor-
mance in ADHD [14], adverse effects from such medi-
cation have also been reported [15–19]. The immediate 
environment, which is the main concern of the present 
study, is also known to have a significant impact on the 
expression of certain ADHD symptoms such as hyperac-
tivity, impulsivity or inattention [20–26].

Several models, including the optimal stimulation 
theory [20], the cognitive-energetic model [27], the sto-
chastic resonance (SR) effect [28] and the moderate brain 
arousal (MBA) model [29], have tentatively incorporated 
an improvement of cognitive functioning related to envi-
ronmental stimulation. The optimal stimulation theory is 
based on a homeostatic model, suggesting that each indi-
vidual has its own biologically determined optimal level of 
arousal enabling him/her to reach the best level of cogni-
tive functioning [20, 30]. Zentall, Zentall [30] hypothe-
sized that children with ADHD suffer from under-arousal, 
which lowers their level of performance under “normal” 
conditions. They interpreted the restless and inatten-
tive behavior of ADHD children as self-stimulation in 
order to raise their arousal level and, consequently, per-
formance. Zentall, Zentall [30] suggest that the motor 
activity of children with ADHD increases more when they 
are exposed to a stimulus-poor environment in order to 
reach their high-stimulation threshold. The optimal stim-
ulation theory was first proposed as a theoretical model 
but was later supported by empirical behavioral evidence 
from improvement in children with ADHD when extra-
task stimulation was added, such as background linguis-
tic noise during a reading/arithmetic task [31], pictures 
during a continuous performance test (CPT) auditory 
task [32], colored items during a CPT task [33, 34] and 
background music during arithmetic tasks [35]. Thus, 
apparent distraction might have a positive effect on per-
formance and is therefore not always detrimental. In line 
with the optimal stimulation theory, the cognitive-ener-
getic model postulates that ADHD symptoms and deficits 
occur because of problems with regulating energetic fac-
tors [27]. Sergeant et al. [27] suggest that performance is 
not only influenced by cognitive capacity but also by envi-
ronmentally determined levels of arousal and activation 
as well as the extent to which variations in these energetic 
factors can be managed to ensure optimal performance.

One possible explanation for why adding stimulation 
might be beneficial lies in the stochastic resonance (SR) 
phenomenon [36]. SR is a phenomenon in which an opti-
mal amount of random noise (e.g. white noise1), may be 

1 White noise is a continuous random signal-sound from 20 to 20,000 Hz 
[23].

beneficial for cognitive performance under certain cir-
cumstances [36]. Jepma et  al. [37] showed, for example, 
that task-irrelevant auditory white noise can speed up 
responses to stimuli in the visual modality.

The MBA model [38] is a neurocomputational model 
related to the concept of SR but has been developed in 
the framework of ADHD research. MBA model pos-
its that random noise in the environment introduces, 
through the perceptual system, internal noise into the 
neural system. This noise is assumed to compensate for 
the reduced background neural activity in ADHD related 
to their hypofunctioning dopaminergic system [38, 39]. 
Soderlund et  al. [22] propose that the required level of 
extra-task stimulation (noise) depends on dopamine 
functioning so that participants with low dopamine lev-
els (such as children with ADHD) require more noise to 
reach optimal cognitive performance in comparison with 
typically developing children (TDC).

MBA model is corroborated by three studies using a 
long-term memory task [22, 26, 40], which indicate that 
an optimal level of noise for inattentive children has det-
rimental consequences for TDC. Helps et  al. [26] also 
showed benefits from white noise in a Go/Nogo task in 
children who were considered as “sub-attentive” by their 
teachers, while performance in “super-attentive” chil-
dren worsened. The benefits concerned omission errors, 
which were significantly reduced in the sub-attentive 
group (in the white noise exposure condition), while 
there was no effect on commission errors for any group. 
However, a direct link between dopaminergic function-
ing and the beneficial effect of white noise on cognition 
has not yet been clearly demonstrated [26, 38]. In a study 
with a rat model of ADHD [41], white noise exposure did 
not increase dopamine levels, and noise benefit could be 
found even in dopamine-lesioned rats. In humans, spon-
taneous eye-blink rate, a marker of dopamine functioning 
in the striatum [42, 43], might help to further investigate 
this relationship.

To our knowledge, the potential effect of a white noise 
exposure on a visual Go/Nogo task has not been previ-
ously examined in children with ADHD, nor at behav-
ioral or at neurophysiological levels. The P300 is an 
event-related potential (ERP) component that allows dif-
ferent processes (see below) to be studied and is often 
used as an interest marker in ADHD [44–47]. ERP stud-
ies in ADHD using Go/Nogo tasks have generally shown 
reductions in P300 amplitudes at centro-parietal sites 
in children with ADHD when compared to TDC (in 
Woltering et al. [48]), though this may not always be the 
case (see [49, 50]). This attenuation of P300 amplitudes in 
individuals with ADHD may suggest that less attentional 
resources are allocated to inhibitory control and related 
evaluative processes [48].



Page 3 of 13Baijot et al. Behav Brain Funct  (2016) 12:11 

In this study, the first objective was to compare noise 
benefit between children with ADHD and TDC in a 
visual cued Go/Nogo task using both behavioral and 
neurophysiological measures. This task, in which a non-
informative cue precedes each Go or Nogo trial, enables 
the separate examination of P300 evoked by: (1) prepa-
ration (Cue P300); (2) inhibition (Nogo P300); (3) atten-
tion and orienting processes (Go P300; [51]). The Cued 
Go/Nogo was chosen because the high target/non-target 
ratio in this task is adapted to rapidly obtain the mini-
mum of 36 artifact-free trials (by condition) required 
for measuring a P300 [52]. Moreover, white noise was 
already found to be beneficial in a study using Go/Nogo 
in children considered “sub-attentive” but without an 
ADHD diagnosis [26]. The Go/Nogo task is also one of 
the most frequent inhibition tasks used in ADHD [53]. 
The second objective was to investigate potential corre-
lations between noise benefit and individual neuropsy-
chological profiles. For that purpose, we proposed a 
new marker of performance, the “Noise Benefit Index” 
(NBI), which allowed us to consider whether or not 
participants had benefited from noise (present dur-
ing the task), regardless of their group categorization 
(ADHD or TDC). The third objective was to investi-
gate whether this NBI has a neurophysiological impact, 
i.e. whether differences in the P300 component can be 
observed between “noise-beneficiaries” (subjects who 
benefit from noise) and “noise non-beneficiaries” (sub-
jects who do not). Finally, the fourth objective, was to 
measure spontaneous eye-blink rates to test the MBA 
model assumption that white noise would increase 
arousal through dopaminergic system modulation [38]. 
We hypothesized that (1) neuropsychological and neu-
rophysiological differences would be observed between 
children with ADHD and TDC submitted to the visual 
cued Go/Nogo paradigm. We expected to observe more 
omissions, more impulsive errors, and slower and more 
variable RTs in the ADHD group but only in the no noise 
condition. In electrophysiological data, we expected to 
observe attenuated P300 amplitudes in children with 
ADHD compared to TDC in the no-noise condition. (2) 
We expected to observe increased P300 mean amplitude 
in the noise condition for noise beneficiaries and cor-
relations between noise benefit and neuropsychological 
(and clinical) markers of attention and inhibition. (3) 
We expected a significant relationship between ADHD 
categorization and noise benefit categorization. (4) We 
hypothesized that children with ADHD would exhibit 
different eye-blink rates than TDC (in a no-noise con-
dition) but that this difference would be reduced during 
white noise exposure.

Methods
Participants
Children with ADHD were recruited and assessed 
according to DSM IV-TR criteria [54] by a multidisci-
plinary team including pediatric neurologists and neu-
ropsychologists in local university hospitals. If the child 
was regularly treated by methylphenidate, medication 
was stopped 48 h before testing. Exclusion criteria were 
a seizure disorder, IQ below 80, being in a specialized 
school, psychiatric comorbidities (assessed through the 
CBCL questionnaire; listed in Table  1), non-corrected 
sensory deficits and pharmacological treatment (other 
than methylphenidate) that could interfere with behavio-
ral performance and/or with neurophysiological results. 
Children who have had otitis or other ear problems had 
an audiometry to ensure they had normal hearing.

At first, 36 children (7–12 years old) were recruited for 
the study. Three children were excluded because of a too 
poor signal-to-noise ratio after EEG qualitative observa-
tion. Two children were excluded because their estimated 
IQ was below 80, and one child asked to stop the experi-
ment because it was too long for him. The two groups 
(ADHD and TDC) consisted then of 13 children with 
ADHD (5 girls; mean age = 9.2; SD = 1.3) and 17 TDC 
(9 girls; mean age = 8.5; SD = 1.2). TDC were recruited 
from primary schools.

In addition to the neuropsychological assessment (see 
2.1.1.), each child performed subtests of the Wechsler 
Intelligence Scale for Children (WISC-IV: Wechsler, 
2005). Estimated IQ was computed based on two per-
ceptual processing subtests (picture concepts, matrix 
reasoning) and two verbal comprehension subtests (simi-
larities, vocabulary) of the WISC-IV. Intellectual assess-
ment was aimed at excluding children who presented an 
intellectual weakness but was not used for group com-
parison as it is known to be influenced by attentional 
and executive factors [55, 56]. Parents were asked to 
fill in the Child Behavior Checklist–CBCL [57]. Results 
from CBCL and IQ testing are shown in Table 1. As gen-
der influences symptom expression and cognitive profile 
in ADHD [58], we performed a Chi square test of inde-
pendence to assess whether the gender ratio was different 
between the groups. It showed that the gender ratio was 
not statistically different between the groups [Chi square 
(1) = 1.23, p = .27].

Informed consents were obtained from all subjects and 
from their parents with the prior approval of the Ethics 
Committee of the Queen Fabiola Children’s University 
Hospital (ULB, Belgium), of the Erasme Hospital (ULB, 
Belgium) and of the Faculty of Psychology and Education 
(ULB, Belgium).
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Material and procedure
Data was acquired during two separate sessions: a neu-
ropsychological assessment and an experimental session.

Neuropsychological assessment
During this session, we used the computerized TAP bat-
tery [59, 60] and a Counting Stroop task [61] to assess dif-
ferent components of attention and executive functions. 
The TAP battery allows assessing several attentional and 
executive processes and is well normed (n  >  500), both 
for children (from 6 years old) and adults, which allows 
using the same battery in children and adult studies. It 
has been shown to be an effective instrument to investi-
gate both cognitive functions in ADHD (in children and 
adults) [60] and treatment efficacy in ADHD [62]. Atten-
tional abilities were assessed using the Alertness subtest 
of the TAP. Alertness included a simple reaction time 
(tonic alertness) and an auditory-cued reaction time task 
(phasic alertness). The tonic condition represents a good 
measure of intrinsic alertness and the phasic alertness is 
used to evaluate the effect of a warning cue during atten-
tion tasks. Inhibition was evaluated using the Go/Nogo 
subtest of the TAP and a Counting Stroop task [61, 63]. 
The Go/Nogo task requires either a button press response 
(Go) or the inhibition of a response (Nogo), depending 
on the stimuli presented (the “go” is represented by an 
“×” and the “nogo” by a “+”). The Counting Stroop task 
included three conditions: counting, reading and inter-
ference. Items were presented on a computer screen in 
10 lines, presented one at time, with 10 stimuli per line 
(squares with numbers or dots). In the counting condi-
tion, children had to report as fast as possible the number 
of dots within each square. In the reading condition, they 

had to read the number written within each square. In 
the interference condition, they had to report how many 
numbers were written within each square, while avoiding 
reading the number itself.

IQ testing as well as the completion of the CBCL ques-
tionnaire and the informed consent was performed dur-
ing this session.

Experimental session
In the visual cued Go/Nogo task, the child was submit-
ted to three kinds of 3 ×  3  cm stimuli briefly displayed 
(150 ms), in black, one by one on a grey background. A 
square (the warning stimulus hereafter called the cue) 
always preceded Go (“×”) or Nogo (“+”) stimuli. Go 
and Nogo stimuli each had a 50 % of probability of fol-
lowing a cue and were pseudo-randomly displayed (see 
Fig. 1). The inter-stimulus interval (ISI) between the cue 
and the following stimulus was varied randomly (1–2 s, 
mean =  1.5  s) while the ISI between Go or Nogo stim-
uli and the following cue was constant (2.5  s). The task 
was divided into two different blocks, each lasting 4 min 
20 s. In each block, 60 cues were presented, 30 Go and 30 
Nogo stimuli. Subjects had to perform each block twice, 
once with and once without white noise. There were thus 
altogether four blocks per participant. The order of the 
blocks and conditions (noise or no-noise exposure) was 
counterbalanced. Noise was delivered binaurally at 77 dB 
SPL with Etymotic earphones (model ER-3A) connected 
through a 25 cm long silicon tube ending in a hollowed 
foam cylinder inserted into the entrance of the ear canals.

The children were asked to press a button as fast as 
possible each time a Go stimulus was displayed and 
had to inhibit pressing when a Nogo was presented. We 

Table 1 Means, standard deviations and group comparison for estimated IQ, age and parent-rated CBCL T-scores

* p value indicating significant difference between groups; overall α = .05
a  Child behavior checklist; T-scores
b  p values below are corrected for multiple comparisons (Bonferroni correction)

Measure Group t test and ANOVA

TDCN = 17 ADHDN = 13 t p

Mean SD Mean SD

Estimated IQ 111.2 6.8 102.9 9.9 −2.72 .01*

Age 9.2 1.3 8.5 1.2 −1.66 .11

CBCLa pb

Affective problemsa 56.3 6.8 62.8 7.0 2.39 .14

Anxiety problemsa 58.1 7.1 59.6 7.9 .53 .99

Somatic problemsa 56.8 5.6 55.9 6.9 −0.36 1

ADHD problemsa 53.2 5.5 64.8 7.6 4.51 <.01*

Oppositional defiant problemsa 56.9 7.7 60.3 9.5 1.00 .99

Conduct problemsa 58.4 8.9 62.7 9.5 1.18 .95
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explained them that the square was supposed to help 
them prepare for the following stimulus presentation. 
Both speed and accuracy were encouraged.

For the sake of EEG recordings, the children sat in a 
sound attenuated room in a comfortable resting chair 
with headrest. Distance from the 17″ computer monitor 
was 120 cm.

Electrophysiological recording
Brain electrical activity was recorded with an ASA EEG/
ERP system (ANT software, The Netherlands) from 14 
channels (Fz, F3, F4, Cz, C3, C4, Pz, P3, P4, Oz, O3, O4 
and M1–M2 for the left and right mastoids), embed-
ded in a waveguard cap (10–20 system) and all referred 
to the mean of the two mastoids. Horizontal and verti-
cal eye movements were monitored using two bipolar 
recordings: one between each outer eye canthus and one 
between a supraorbital electrode and an electrode posi-
tioned just below the lower eyelid on the left side. The 
ground was placed on the left wrist. All impedances were 
kept below 10 kΩ. After amplification (×20) and online 
filtering (0.1–100 Hz, as recommended in Duncan et al. 
[52]), the input signals were digitized with a sampling 
rate of 512 Hz and stored on the computer disk for off-
line averaging.

After the experimental task, children were asked to 
keep their eyes open to record eye-blinking rate, dur-
ing two blocks of 2 min, one with and one without white 
noise exposure (in counterbalanced order).

Data analysis
Neuropsychological assessment, IQ testing and CBCL
Independent samples t tests were used to assess group 
differences (ADHD vs. TDC) with regard to IQ, CBCL 
questionnaire as well as scores from the TAP and from 
the Counting Stroop.

In the TAP subtests, subject’s median RT was chosen as 
a measure of response latencies because it is less sensitive 
than the mean to the enhanced intra-individual variabil-
ity in response time usually observed in the ADHD popu-
lation [12]. Another dependent variable, estimating the 
intra-individual variability, was the coefficient of varia-
tion (CV) of reaction times [64], a normalized measure of 
dispersion, defined as the ratio of the standard deviation 
(σ) to the mean (μ): CV = σ/µ. The CV is useful because 
the standard deviation of data must be understood in the 
context of the mean of the data [65]. We also used hits, 
anticipations (in the phasic alert part of the Alertness 
part) and errors (in the Go/Nogo test) as measures of 
impulsivity [59].

Two variables were computed to investigate the clas-
sical interference effect in the Counting Stroop, i.e. the 
difference scores (e.g., [66]) between counting and inter-
ference conditions for total time (“time interference 
index”) and for total number of non-corrected errors 
(“errors interference index”).

Experimental task
Dependent variables were omissions (no responses to 
“Go” trials), false alarms (“FA cue”, pushing when the cue 
is shown and “FA Nogo”, pushing when “+” is shown), 
RTs and the RT variability.

Group assignation
Subjects were assigned to two kinds of groups. First, 
they were assigned according to their diagnosis status: 
“ADHD” or “TDC”. Second, they were assigned according 
to their benefit from noise or not during the task. There-
fore, we computed a NBI that calculated the difference of 
omissions, for each subject, in noise vs. no-noise condi-
tions (i.e. the percentage of hits in the noise condition 
minus the percentage of hits in the no-noise condition). 

Cue 

Fig. 1 Illustration of the visual cued Go/Nogo task with stimuli, ISI and stimulus-related processes
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Children with a higher NBI index (i.e. more hits/less 
omissions in the noise condition) were grouped as “noise 
beneficiaries” (n = 12) and the others (same or less hits/
more omissions in the noise condition) were assigned to 
the “non-beneficiaries” group (n = 18). Mean and stand-
ard deviation (SD) for the NBI scores in each group are: 
ADHD (mean = 9.11, SD = 22.24); TDC (mean = −2.80, 
SD  =  7.20), noise beneficiaries (mean  =  15.20; 
SD  =  19.71); noise non-beneficiaries (mean  =  −6.20; 
SD = 3.71).

A median split, another possible way to create two 
groups regarding noise benefit, might have assigned par-
ticipants who made more omissions in the noise condi-
tion to the “noise beneficiaries” group. Therefore, the 
former method, although not perfect, was considered 
more appropriate. As gender influences symptom expres-
sion and the cognitive profile [58], we performed a Chi 
square test of independence to assess whether the gender 
ratio was different between the groups (“noise-beneficiar-
ies” and “non-beneficiaries”). It showed that the gender 
ratio was not statistically different between the groups 
[Chi square (1) =  .55, p =  .46]. Age did not statistically 
differ between these groups [t(28) = −1.72; p = .10].

For all dependent variables, two mixed ANOVA’s were 
performed with between Group factors: (1) ADHD vs. 
TDC and (2) “noise beneficiaries” vs. “non-beneficiar-
ies”. Within-subjects factors were block (first vs. second 
block) and condition (noise vs. no-noise).

Chi square test of independence was applied to exam-
ine the potential relation between ADHD and benefiting 
from noise. Aside from the Chi square test, an independ-
ent samples t test was used to assess the difference in the 
mean of the NBI score between ADHD and TDC groups. 
Pearson correlations were used to examine relationships 
between the NBI and neuropsychological scores.

Neurophysiological measures
Continuous EEG was segmented in 1200  ms epochs 
including a 200 ms pre-stimulus onset baseline. Averaged 
waveforms were computed for each subject and then 
across groups for each of the following trials: “Go” (“×”), 
only when the subject had responded, “Nogo” (“+”), only 
when the child did not respond and “cue” (square).

Blinks were corrected with the SOBI algorithm [67] 
to avoid rejecting too many epochs during averaging. 
By doing so, we kept at least 90 % of the epochs for each 
participant after averaging (with a rejection criterion 
at  ±100  µV, as recommended by Duncan et  al., [52]). 
Data were baseline corrected before statistical analysis. 
Mean amplitudes were individually identified by group, 
for each type of P300 (Cue, Go, Nogo) and at Cz and Pz. 
They were computed in a 300 ms temporal window cen-
tered on the most positive point visually inspected (on 

the grand average) for each of the three kinds of trials 
(Cue P300, Go P300 and Nogo P300), for each group, for 
each condition (noise and no-noise) and for each elec-
trode (Cz and Pz).

For each “Type of P300” (Cue P300, Go P300 and 
Nogo P300), two mixed ANOVA’s were performed for 
mean amplitude with Groups: (1) ADHD vs. TDC and 
(2) “noise beneficiaries” vs. “noise non-beneficiaries” as 
between-subjects factors. “Site” (Cz, Pz) and condition 
(noise vs. no noise) were within-subject factors.

Eye‑blink rates
Spontaneous eye-blink rates (after the task) were ana-
lyzed with Matlab 2012. A free Matlab script, “peakdet” 
([68] cited in [69]), allowed us to count eye-blinks for 
each subject from their EEG recording.

We chose to register spontaneous eye-blinks after the 
main experiment (and not during) because our goal was to 
make an indirect inference between dopaminergic func-
tioning and white noise. While eye-blinks during a task 
seem to reflect the transition of activation between dif-
ferent neural networks [70], spontaneous eye-blink rates 
reflect a more “natural-state” of dopaminergic function-
ing. The latter, therefore, was chosen because it was more 
related to our original hypotheses. Moreover, children 
were explicitly asked not to blink too much during the 
task. This could have biased our observations, contrary to 
the resting state condition (without such instruction).

A repeated measures ANOVA was performed for eye-
blink rates with Groups: (ADHD vs. TDC) as between 
subject factor and condition (noise vs. no noise) as 
within-subjects factor.

All statistical analyses were performed using “Statistica 
8.0”. When necessary, post hoc Tukey tests were applied.

Results
IQ testing, CBCL questionnaire and neuropsychological 
assessment
As illustrated in Table  1, TDC (IQ =  111.2 ±  6.8) per-
formed higher than children with ADHD (IQ = 102.9 ±  
9.9) on estimated IQ measures [t(28) = −2.72; p =  .01]. 
CBCL T-scores were significantly different between 
groups for the ADHD subscale only [t(28)  =  4.51; 
p < .01].

In the Alertness TAP subtest, analyses disclosed larger 
mean median RTs in ADHD than in the TDC group in 
tonic [t(28) = 2.18; p =  .04] and phasic alertness condi-
tion [t(28) = 2.24; p =  .03]. Coefficient of variation was 
also higher in ADHD for tonic [t(28) = 2.42; p = .02] and 
phasic alertness [t(28) = 3.31; p < .001]. ADHD children 
had less correct responses [t(28) = −2.93; p =  .01] and 
made more anticipations [t(28) = 2.89; p = .01] than the 
TDC group.
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In the Go/Nogo TAP subtest, coefficient of varia-
tion [t(28)  =  2.21; p  =  .03] and the number of errors 
[t(28) = 2.48; p =  .02] were larger in the ADHD than in 
the TDC group.

In the Counting Stroop task, analyses disclosed signifi-
cantly larger time interference [t(28) = 4.46; p < .001] and 
errors difference indices [t(28) = 2.04; p = .05] in ADHD 
than in TDC.

All results of the TAP tests and the Counting Stroop 
are shown in Table 2.

Cued Go/Nogo experimental task results
Relevant behavioral and electrophysiological data are 
presented according to the comparison between ADHD 
and TDC groups in Section 1 and according to the com-
parison between “noise-beneficiaries” and “non-benefi-
ciaries” groups in Section 2. Block factor was included in 
each behavioral analysis but will not be presented, as the 
results were not relevant in this context.

Section 1: ADHD vs. TDC
Behavioral measures

Omissions
Children with ADHD made more omission errors than 

TDC [F(1,28) = 5.69, p = .02]. There was no main effect 
of Condition [F(1,28) =  1.21, p =  .28], but a significant 
Group*Condition interaction (see Fig. 2) [F(1,28) = 4.32, 
p = .04] indicated that children with ADHD made more 
omissions than TDC in the no-noise condition only 
(p = .02). There was no other interaction (all Fs < 2.23).

RTs and RT variability
Children with ADHD were slower [F(1,28)  =  9.98, 

p = .004] an more variable [F(1,28) = 9.98, p = .04] than 
TDC. All other factors did not reach significance and did 
not interact with each other (all Fs < 1).

FA cue
Children with ADHD committed more FA cues than 

TDC [F(1,28) = 4.14, p = .051]. No other factor reached 
significance and there was no interaction (all Fs < 2.96).

Table 2 Means, standard deviations and  group comparison for  TAP (tonic and  phasic alert, Go/Nogo) and  Counting 
Stroop tests

a  Scores of tonic alert in alertness task
b  Scores of phasic alert in alertness task
c  Scores representing the difference of performance between counting and interference conditions: Time interf. index. difference of total times; Errors interf. index 
difference of non-corrected errors

* p value indicating significant difference between groups; overall α = .0

Measures Group t test

TDC
N = 17

ADHD
N = 13

t values p

Mean SD Mean SD

Alertness (tonic)a

 Median 305.35 71.12 421.00 203.96 2.18 .04*

 CV 0.22 0.08 0.32 0.14 2.42 .02*

 Hits 40.00 0.00 39.62 0.96 −1.66 .11

 Anticipations 0.00 0.00 0.00 0.00 – –

Alertness (phasic)b

 Median 281.94 55.20 353.38 115.81 2.24 .03*

 CV 0.17 0.05 0.31 0.17 3.31 .00*

 Hits 39.29 1.82 35.08 5.59 −2.93 .01*

 Omissions 0.00 0.00 0.54 1.45 1.54 .13

 Anticipations 5.00 4.55 12.08 8.69 2.89 .01*

Go/Nogo

 Median 521.88 79.15 584.83 92.01 1.97 .06

 CV 0.24 0.06 0.29 0.05 2.21 .03*

 Errors 2.59 2.12 5.23 3.68 2.48 .02*

 Omission 0.71 1.21 3.15 5.16 1.90 .07

Stroopc

 Time interf. index 39.59 16.41 72.46 23.95 4.46 <.001*

 Errors interf. index 0.35 0.70 2.08 3.40 2.04 .05*
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FA nogo
No factor reached significance and there was no inter-

action (all Fs < 2.04).
Electrophysiological measures
Cue P300
Cue P300 amplitudes were similar regardless of the 

Group, Condition or Site and there was no interaction 
(all Fs < 2.88).

Go P300
Go P300 amplitudes were similar regardless of the 

Group, Condition or Site and there was no interaction 
(all Fs < 1).

Nogo P300
There was a Group*Site interaction [F(1,28) =  32.48,  

p <  .001] and a three-way interaction Group*Condition* 
Site [F(1,28) = 5.04, p = .03], indicating that ADHD had 
a significant higher Nogo P300 than TDC but only at Pz 
in the noise condition (p = .05). No other factor reached 
significance and there was no interaction (all Fs < 3.75).

Section 2: Noise beneficiaries vs. noise non‑beneficiaries
In this section, children who benefited from noise (noise-
beneficiaries) were compared to those who did not (non-
beneficiaries), independently of their diagnostic status. 
Given that we split our groups according to the fact that 
children benefited from noise on omissions errors, ana-
lyzing behavioral effects on these omissions would be 
redundant and was not included. Here we present analy-
ses on electrophysiological because no relevant behav-
ioral analysis reached significance. The clinical status * 
noise benefit * block * condition four-way mixed ANOVA 
would have allowed quantifying the interaction effect of 
clinical status and noise benefit on our dependent vari-
ables. However, we did not follow this approach because 
the two types of group assignment yielded an imbalanced 
design with cells with low sample sizes (see Table 4).

Electrophysiological measures

Go P300
There was a three-way interaction Group*Condition* 

Site [F(1,28) = 9.62, p = .005] indicating, as illustrated in 
Fig. 3, that the amplitude of the Go P300 increased mar-
ginally for noise beneficiaries at Cz in the noise relative to 
the no-noise condition (p = .06). All other factors did not 
reach significance and did not interact with each other 
(all Fs < 1.38).

There was no relevant result for Group, Condition or 
Site factors as regards Cue and Nogo P300.

The Noise Benefit Index (NBI) and its relationship to ADHD 
and cognitive functions
All significant correlations between NBI and neuropsy-
chological tests (TAP and Counting Stroop) are pre-
sented in Table 3. Both markers of inattention (CV and 
hits from Phasic Alert test) and of motor and cognitive 
inhibition (respectively, anticipation from the Phasic 
Alert and the errors interference index from Stroop test) 
exhibited correlations with the NBI.

These correlations indicate a relationship between ben-
efitting from noise and lower attention and inhibition 
(motor and cognitive) in the neuropsychological tests.

The Chi square test highlighted a significant relation-
ship between the Group factor (ADHD or TDC) and 
benefitting from noise [Chi square (1) =  4.43 p =  .035; 
see Table  4]. Children with ADHD had a significantly 
higher NBI score than TDC [t(28) = 2.08; p = .04].

Eye‑blink rates
Children with ADHD made significantly more eye-blinks 
than TDC [F(1,28) = 5.94, p =  .02]. There was no other 
significant effect or interaction (all Fs < 1.09).

Discussion
In this study, we first aimed to evaluate the potential 
cognitive benefit of white noise exposure during a visual 
cued Go/Nogo task in children with ADHD and TDC. 
The second objective was to examine, through the use of 
a new index (NBI), whether potential correlations could 
be observed between noise benefit in the visual cued Go/
Nogo task and individual neuropsychological profiles. 
The third objective was to investigate whether this NBI 
had a neurophysiological correlate, i.e. whether differ-
ences in the P300 component can be observed between 
“noise-beneficiaries” and “non-beneficiaries”. The fourth 
objective was to discuss, through the use of spontane-
ous eye-blink rates, the Moderate Brain Arousal model 
according to which white noise modulates dopaminergic 
functioning [38].

Regarding participant characteristics’, ADHD and TDC 
differed in the CBCL only in the ADHD problems sub-
scale, indicating a limited influence of comorbidities on 
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results. Results from the attentional and executive assess-
ment showed significant differences between children 
with ADHD and TDC. Children with ADHD were slower 

and had higher RT variability on all neuropsychological 
tasks (phasic and tonic alert, Go/Nogo and our experi-
mental task), confirming previous observations [71–73]. 
They made more omissions (phasic alert and Go/Nogo) 
and showed more impulsivity, as indexed by anticipa-
tions, Go/Nogo and interference in the Stroop.

Similar results were obtained in the experimental task. 
Children with ADHD made more omissions, more impul-
sive errors (i.e. FA cue) and had slower and more variable 
RTs than TDC. However, exposure to white noise during 
the experimental task showed a positive impact on cogni-
tive performance in children with ADHD. To the best of 
our knowledge, this is the first demonstration of a benefi-
cial effect of white noise in the Go/Nogo paradigm in a 
study comparing children with and without ADHD. Posi-
tive effects of white noise have already been documented 
on memory [22] and on Go/Nogo performance [26], but 
this last study was conducted with children teacher-rated 
inattentive. Taken together, results from the present study 
are in accordance with the optimal stimulation theory 
and the MBA model, both suggesting that the addition of 
extra-task stimulation is likely to improve cognitive func-
tioning in ADHD. Moreover, these results help to clarify 
what kind of improvement might be expected (at 77 dB). 
Indeed, improvement was limited to omissions only (as 
in [26]). RTs and RT variability, as well as the number of 
false alarms (i.e., FA cue) remained significantly higher 
in children with ADHD compared to TDC, independent 
of the condition. Consequently, the beneficial effect of 
white noise on cognition is not generalizable to all atten-
tional and executive functions but seems, in this task, to 
modulate vigilance more specifically. No Block effect was 
observed, which might have shown a larger beneficial 
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Table 3 Significant correlation between  NBI and  neu-
ropsychological tests

a  NBI Noise Benefit Index
b  p value corrected for multiple comparison (for each cognitive function, p 
values were corrected according to the number of dependent variables)
c  Scores of tonic alert (alertness task)
d  Scores of phasic alert (alertness task)
e  Errors interf. index difference of non-corrected errors between scores in 
counting and interference conditions

* p value indicating significant difference between groups; α = .05

NBIa correlations r p p corrb

Alertness (tonic)c

 CV .62 <.01* <.01*

Alertness (phasic)d

 Hits −.50 <.01* .02*

 Anticipations .45 .01* .04*

Stroope

 Errors interf. index .69 <.01* <.01*

Table 4 Repartition of each subject according to their cat-
egorization (ADHD or TDC) and to their benefit from noise 
during the visual cued Go/Nogo

a  Non-beneficiaries all subjects who did not benefit from noise
b  Noise-beneficiaries subjects who benefitted from noise

Groups Non‑beneficiariesa Noise‑beneficiariesb

TDC 13 4

ADHD 5 8
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effect of white noise exposure during the second half of 
the task, namely a real benefit in the wake of fatigue. A 
longer task might disclose such an effect, and this should 
be considered in future studies.

Electrophysiological data showed a significant 
Group*Condition*Site interaction with a higher Nogo 
P300 amplitude in ADHD than in TDC at Pz in the noise 
condition. This result might indicate enhanced inhibitory 
processes in children with ADHD in the noise condi-
tion. However, behavioral results did not show a similar 
effect, as we did not observe a difference between groups 
according to noise exposure. Possibly, this Nogo P300 
underlines a positive neurophysiological effect of white 
noise that is not observed at the performance level (see 
e.g. [74]). More sensitive inhibition tasks (such as the 
stop-signal task [75, 76]) could be used in future studies. 
Electrophysiological data did not show other relevant dif-
ference between children with ADHD and TDC, regard-
less of the condition (noise or no-noise) and the type 
of P300—Cue P300, Go P300 and Nogo P300—that are 
associated with behavioral processes (preparatory pro-
cesses, attentional and inhibitory processes respectively 
[51]. This suggests that despite the same amount of atten-
tional resources allocated to these different cognitive 
processes in both groups [48], children with ADHD had 
worse behavioral performance. This observation high-
lights the heterogeneity of findings according to ERP 
research in ADHD [50]. With regard to the literature [48] 
and our behavioral results, we anticipated both a reduced 
Cue and Go P300 mean amplitudes in children with 
ADHD compared to TDC. Other studies have also found 
absence of effect on P300 amplitude despite a significant 
decline in performance in ADHD group [44, 77]. We sug-
gest that this absence of neurophysiological difference 
can be explained by our non-comorbid group of children 
with ADHD. Indeed, Yoon et al. [78] showed that ADHD-
comorbid (with ODD or CD) but not ADHD-pure chil-
dren displayed significant P300 amplitude reduction 
compared to TDC.

When groups were assigned according to their noise 
benefit (noise-beneficiaries and non-beneficiaries), we 
demonstrated a significant relationship between group 
classification (ADHD or TDC) and benefiting (or not) 
from noise. In addition, we found significant correla-
tions between benefitting from noise and markers of 
vigilance (RT variability, omissions) and motor/cognitive 
inhibition (anticipation errors and interference errors) in 
Stroop and TAP tasks (all correlations = p ≤ .01). These 
markers have been identified as core cognitive symptoms 
in ADHD [9].

Furthermore, noise-beneficiaries had a marginally 
larger Go P300 mean amplitude in the noise condi-
tion compared to the no-noise condition. This was not 

found in participants who didn’t benefit from noise. 
Interestingly, white noise modulates only, at an electro-
physiological level, the Go P300 mean amplitude (for 
noise-beneficiaries), which is associated with attentional 
processes (like vigilance); and white noise modulates 
only vigilance at a behavioral level (and not impulsive 
errors, RTs or RT variability) in children with ADHD. 
We propose two possible complementary explanations: 
(1) White noise, perceived as a potential distractor, could 
make noise beneficiaries (prone to distraction regarding 
their correlations with markers of vigilance) gathering up 
more attentional resources not to be distracted. (2) The 
perceptual load hypothesis [79] proposes that increas-
ing perceptual load (adding “task irrelevant-distractors”) 
reduces, or even eliminates, any distractor interference 
effect. Lavie [79] suggests that small increases in percep-
tual load may be beneficial for populations that are prone 
to distraction (e.g. children with ADHD). In our study, 
white noise, increasing general perceptual load, indeed 
reduces the inattention/improves vigilance (expressed in 
numbers of omissions) of children who are more easily 
distracted.

Finally, noise benefit on cognitive functioning supports 
the MBA model. However, it is unclear whether this 
noise improves performance through dopamine system 
modulation, as suggested by Sikstrom, Soderlund [38]. 
We addressed this issue by analyzing the spontaneous 
eye-blink rate, an indirect marker of dopamine function-
ing in the striatum [42, 43, 80, 81]. Spontaneous eye-blink 
rate measures showed that children with ADHD made 
more eye-blinks than TDC, which supports the relation 
between ADHD and dopaminergic system and could, 
therefore, be considered as a potential measure for future 
studies. However, noise did not significantly modulate 
eye-blink rate, which does not support the MBA model 
assumption. Yet, recent papers presented direct evidence 
that the central dopaminergic activity is involved in the 
modulation of P300 parameters [82, 83]. Given our find-
ing of a modulation of the Go P300 by noise (for noise 
beneficiaries), the MBA model hypothesis is not to be 
ruled out but rather reviewed.

Limitations of the study
Some limitations of our study have to be mentioned 
including, first, the small number of participants. Second 
(probably related to the first), the three-way interaction 
showing a larger Go P300 for the noise beneficiaries in 
the noise condition was only a trend. Third, in ERP stud-
ies on cognition, it is recommended to use two-year 
groupings over the age of 8  years because of significant 
ERP changes over a short time period [84]. Due to the 
difficulty of recruiting (with respect to the exclusion cri-
teria and the characteristics of the experiment) and the 
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small number of subject, the groups would be too small 
to consider this recommendation. Future studies with 
larger samples are needed to further investigate these 
original and new findings. Fourth, our NBI was calcu-
lated according to the number of omissions to create 
groups, while other factors, such as RT-variability, are 
also considered as pathways that contribute to distin-
guishing children with and without ADHD [85]. From 
our point of view, choosing another component (such as 
RT-variability) remains interesting but omission was the 
only one, in this present study, that seemed to be modu-
lated by noise exposure. Therefore, it was considered to 
be more relevant.

Conclusion and future direction
The finding of a white noise benefit in children with 
ADHD during a Go/Nogo task validates the optimal 
stimulation theory. However, the benefits of white noise 
are not to be generalized to all analyzed functions within 
this task and seem more specifically associated with vigi-
lance improvement. The NBI allowed us to characterize a 
neuropsychological profile, related to that of ADHD, pos-
itively sensitive to noise at both behavioral and electro-
physiological levels. We also provide neurophysiological 
correlates of noise benefit. The eye-blink rate investiga-
tion distinguishes ADHD between TDC groups, but was 
not sensitive to white noise, questioning the influence on 
dopaminergic functioning suggested by the MBA model. 
With regard to the literature, the type of extra-task stim-
ulation has a different impact on cognitive functioning 
according to task requirements and interpersonal differ-
ences [38, 86]. Future research should manipulate these 
different parameters to better understand which stimula-
tion improves/modulates the different executive or atten-
tional function. The present study should be conducted in 
adults with and without ADHD to see if development is a 
crucial factor to take into account. It would be of inter-
est to measure eye-blink rates during the task in a future 
study, and avoiding asking children explicitly to not blink 
during the test. Finally, while this study highlighted the 
potential benefit of adding stimulation in the environ-
ment, it is time to consider children’s on-task behavior in 
a more ecologic environment (e.g., a virtual classroom) to 
fully understand what situational factors help moderating 
difficulties for children with ADHD [87, 88].
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