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Abstract 

Background: 22q11.2 deletion syndrome (22q11DS) is a neurodevelopmental syndrome associated with deficits in 
cognitive and emotional processing. This syndrome represents one of the highest risk factors for the development of 
schizophrenia. Previous studies of functional connectivity (FC) in 22q11DS report aberrant connectivity patterns in 
large-scale networks that are associated with the development of psychotic symptoms.

Methods: In this study, we performed a functional connectivity analysis using the CONN toolbox to test for dif-
ferential connectivity patterns between 54 individuals with 22q11DS and 30 healthy controls, between the ages of 
17–25 years old. We mapped resting-state fMRI data onto 68 atlas-based regions of interest (ROIs) generated by the 
Desikan-Killany atlas in FreeSurfer, resulting in 2278 ROI-to-ROI connections for which we determined total linear 
temporal associations between each. Within the group with 22q11DS only, we further tested the association between 
prodromal symptoms of psychosis and FC.

Results: We observed that relative to controls, individuals with 22q11DS displayed increased FC in lobar networks 
involving the frontal–frontal, frontal–parietal, and frontal–occipital ROIs. In contrast, FC between ROIs in the pari-
etal–temporal and occipital lobes was reduced in the 22q11DS group relative to healthy controls. Moreover, positive 
psychotic symptoms were positively associated with increased functional connections between the left precuneus 
and right superior frontal gyrus, as well as reduced functional connectivity between the bilateral pericalcarine. Positive 
symptoms were negatively associated with increased functional connectivity between the right pericalcarine and 
right postcentral gyrus.

Conclusions: Our results suggest that functional organization may be altered in 22q11DS, leading to disruption in 
connectivity between frontal and other lobar substructures, and potentially increasing risk for prodromal psychosis.
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Background
Chromosome 22q11.2 deletion syndrome (22q11DS) is 
caused by a microdeletion of approximately 50 genes on 
one copy of the q11.2 band of chromosome 22. Youth 

with the syndrome typically present with physical anom-
alies, cognitive impairments, and behavioral disorders [1, 
2]. During adolescence and young adulthood, approxi-
mately 30–40% of individuals with 22q11DS develop a 
psychotic illness, usually schizophrenia [3–5]. This repre-
sents a significant increase over the risk for schizophrenia 
in the general population [6]. The neurobiological mech-
anisms underlying this increased risk for schizophrenia 
in individuals with 22q11DS are not well-understood.
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Converging evidence supports the notion that idi-
opathic (non-syndromal) schizophrenia is a disorder of 
functional and structural dysconnectivity [7–11]. Stud-
ies of functional connectivity point to a preponderance 
of anomalies in frontal–temporal connectivity [12, 13], 
although frontal–parietal and frontal–occipital con-
nections have also been implicated [14, 15]. Moreover, 
abnormalities have been observed in several large-scale, 
functional networks, including the default mode net-
work, the salience network and the central executive net-
work [16–18].

Although studies examining functional dysconnectivity 
in 22q11DS are much fewer in number, the findings are 
consistent with studies of idiopathic schizophrenia [19]. 
Results of these studies indicate anomalous connectiv-
ity in frontal lobe connections [20] and parieto–occipital 
connections [20–22]. Decreases in functional connec-
tivity have also been observed, in partially overlapping 
samples, in the default mode [23–26], salience [24] and 
frontal–parietal networks [22, 24]. In a modularity analy-
sis of overall functional network organization, Scariati 
and colleagues [27] observed increased modular segre-
gation across superior parietal, frontal and inferior tem-
poral lobes in individuals with 22q11DS. Associations 
between anomalous functional connectivity in 22q11DS 
and increased symptoms of psychosis have been observed 
in most [20, 22, 24], but not all studies [25].

To our knowledge, two studies by Scariati and col-
leagues [20, 27] have conducted a functional connectivity 
analysis of atlas-based, ROI-to-ROI structural connec-
tions in 22q11DS. Scariati and colleagues first reported 
widespread functional connectivity in individuals with 
22q11DS, primarily affecting frontal and temporal lobe 
regions. In a more recent study [27], they focused on 
age differences by examining connectivity in a sample 
of 9–30  year-old individuals with 22q11DS that were 
divided into two age groups (groups split at 18 years old) 
for subanalyses. In both age groups, alterations of mod-
ular communities were found to affect the anterior cin-
gulate cortex and parieto-occipital processing regions. 
However, in adults with 22q11DS, they observed non-
typical modularity partition of the dorsolateral prefrontal 
cortex.

Here, we conduct an atlas-based functional connec-
tivity analysis of ROI-to-ROI connections in individuals 
with 22q11DS who are specifically between the ages of 18 
and 24 years, a time-frame that poses the greatest risk for 
developing psychotic illness. In this ROI-to-ROI based 
approach, we sought to assess connectivity patterns by 
matching an anatomical atlas to each subject’s own fMRI 
space. The methodological advantage of this approach 
is that data were not normalized to a standard template, 
thus obviating potentially problematic effects of warping 

the brain. Conceptually, a subject-specific, atlas-based 
approach can yield additional data about the functional 
architecture and organization of the brain [28, 29]. More-
over, the use of atlas-based ROIs provides a common 
framework to increase reproducibility across studies, and 
can be incorporated for use in multimodal studies. In 
order to implement this approach, we applied the func-
tional connectivity toolbox, CONN [28–30], which has 
shown a high degree of interscan reliability [28] and has 
demonstrated disease-relevant functional connections 
between anatomically defined regions of the brain [30]. 
We hypothesized that ROI-to-ROI connectivity between 
sublobar frontal–parietal gyri, and frontal–temporal gyri 
would be anomalous in individuals with 22q11DS rela-
tive to controls, and that aberrant connectivity would be 
associated with symptoms of psychosis.

Methods
Participants
Data were acquired from a large-scale longitudinal study 
of risk factors for psychosis in 22q11DS conducted at 
SUNY Upstate Medical University, Syracuse, NY. Our 
sample consisted of 84 participants: 54 with 22q11DS 
(30 males; mean age 20.98, SD 2.35) and 30 controls (16 
males; mean age 20.97, SD 1.46). The control sample con-
sisted of 12 healthy siblings of individuals with 22q11DS, 
and 18 community controls. Since siblings and commu-
nity controls did not differ in either demographic vari-
ables or measures of functional connectivity (Additional 
file  1), they were combined into one control group. A 
previous publication included 39 of the 54 (72.2%) partic-
ipants with 22q11DS in the current report, which tested 
differential connectivity in resting-state networks utiliz-
ing independent component analysis and associations 
with psychiatric and neurocognitive functioning [22]. 
Additionally, a recent publication including a partially 
overlapping sample of the 22q11DS group in this report 
demonstrated hypoconnectivity as a classifier in the iden-
tification of 22q11DS versus control groups [24].

Diagnosis of 22q11DS was confirmed by fluorescence 
in  situ hybridization (FISH). Recruitment details have 
been described previously [31]. Briefly, exclusion cri-
teria included seizure disorder, fetal exposure to alco-
hol or drugs, parent-reported elevated lead levels or 
birth weight under 2500 g, loss of consciousness lasting 
longer than 15  min, paramagnetic implants, or ortho-
dontic braces. Potential controls with a personal or fam-
ily history of schizophrenia or bipolar disorder were also 
excluded [31]. Since data for the current report were 
taken from a longitudinal study, control participants who 
had presented with an anxiety disorder and/or depression 
at the first timepoint were excluded. However, the cur-
rent report depicts data from the last (fourth) timepoint, 
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and controls that subsequently developed an anxiety 
disorder or depression in the longitudinal study were 
included. Controls with ADHD or a learning disability 
were not excluded at any timepoint in the study to maxi-
mize comparability to higher functioning participants 
in the 22q11DS group. Of the 54 participants, 22 were 
being treated with one or more antidepressant, antianxi-
ety, antipsychotic, or stimulant medications at the time of 
their scan. Three controls were being treated with either 
a stimulant and/or antidepressant/antianxiety medica-
tion. Details of the samples can be found in Table 1.

Within the 22q11DS group, 10 participants were cur-
rently experiencing positive prodromal symptoms of psy-
chosis (based on a frequency of symptoms > 1 week, and 
a score of equal or greater than 3 on the positive symp-
toms subscale of the Structured Interview for Prodro-
mal Symptoms [SIPS; [32]]). An additional 5 participants 
were diagnosed with overt psychosis. Additional details 
regarding these subgroups can be found in Table 2. The 
institutional review board of SUNY Upstate Medical Uni-
versity approved all study procedures, and each partici-
pant provided written informed consent or assent.

Psychiatric assessment
Participants had psychiatric evaluations administered by 
two doctoral-level clinicians (WF and KMA). To deter-
mine the presence of DSM-IV psychiatric diagnoses 
in both the 22q11DS and control group, the Structured 
Clinical Interview for DSM-IV Axis I disorders (SCID; 
[33]) was administered. Inter-rater reliability was calcu-
lated based on 5 consecutive, audio-recorded interviews 

resulting in an interclass correlation coefficient of 0.91. 
The presence of prodromal, positive symptoms of psy-
chosis was determined utilizing the Structured Interview 
for Prodromal Syndromes (SIPS; [32]), conducted within 
the context of the psychiatric evaluation. Additional 
details regarding psychiatric diagnoses can be found in 
Table 1.

Image acquisition
Both anatomical and functional resting-state imaging 
data were acquired with a Siemens Tim Trio, 3 Tesla 
scanner with an 8-channel head coil receiver (Siemens 
Medical Solutions, Erlangen, Germany) during the same 
scanning session. T1-weighted images were acquired in 
the sagittal plane utilizing a MPRAGE pulse sequence 
with the following parameters: TR/TE =  2530/3.31  ms, 
voxel size  =  1.0  ×  1.0  ×  1.0, flip angle  =  7o, field of 
view = 256 mm, and 256 × 256 acquisition matrix. Blood 
oxygen level dependent (BOLD) images were acquired 
during a 5-minute resting-state scan, which included 152 
images (34 axial slices, 4  mm thickness, no gap) utiliz-
ing an ep2d_bold sequence: TR/TE = 2000/30 ms, voxel 
size 4.0 × 4.0 × 4.0, flip angle = 90o, field of view = 256, 
acquisition matrix  =  64  ×  64. Participants were 
instructed to keep their eyes open and not to fall asleep 
during the scanning session.

Image processing
Raw structural data were imported into the FreeSurfer 
image analysis suite (v5.1.0, https://surfer.nmr.mgh.har-
vard.edu/ [34]) for removal of non-brain tissue. The gen-
erated brain mask was then manually edited in 3DSlicer 
4 (https://www.slicer.org/ [35]). Edited brain masks were 
then aligned in 3DSlicer along the anterior and poste-
rior commissure using a cubic spline transformation. 
Resolution was maintained at 1 mm cubic isotropic vox-
els. Preprocessed data were then introduced into Free-
Surfer’s automated surface-based reconstruction and 

Table 1 Demographic and psychiatric data

Demographic and psychiatric data for participants in our group analyses; from 
our initial sample of 85, one proband was excluded due to image quality
a Mean and standard deviation are provided for age and full scale IQ. 
Independent t tests were conducted to determine differences between 
22q11DS and control samples

22q11DS
N = 54

Controls
N = 30

p value

Agea 20.98 (2.35) 20.97 (1.46) 0.990

Gender (male,  %) 30 (55.6%) 16 (53.3%) 0.847

Full scale  IQa

Psychiatric diagnosis, n (%)
74.41 (12.0) 109.47 (16.02) < 0.001

Psychotic disorder 5 (9.26%) 0 (0%) 0.024

ADHD 8 (14.81%) 5 (16.67%) 0.825

Anxiety disorder 11 (20.37%) 4 (13.33%) 0.426

Mood disorder
Current medication, n (%)

7 (12.96%) 1 (6.25%) 0.094

Antipsychotic/mood 
stabilizer

8 (14.81%) 0 (0%) 0.004

Antidepressant/anti-
anxiety

16 (29.63%) 2 (6.67%) 0.004

Stimulant 9 (16.67%) 2 (6.67%) 0.151

Table 2 Demographic data for prodromal and nonprodro-
mal subgroups

Demographic and psychiatric data for prodromal, nonprodromal, and 
participants with overt psychosis from our initial sample of 55; 1 proband was 
excluded due to image quality
a Mean and standard deviation are provided for age and full scale IQ. 
Independent t tests were conducted to determine differences between 
prodromal and nonprodromal subgroups; participants with overt psychosis 
were combined with the prodromal group for subsequent analyses

Prodromal
N = 10

Overt
N = 5

Nonpro-
dromal
N = 39

p value

Agea 22.60 (2.50) 19.43 (1.54) 20.76 (2.21) 0.320

Gender (male, %) 5 (50.0%) 2 (40.0%) 23 (58.97%) 0.436

Full scale  IQa 71.0 (6.65) 61.6 (4.62) 76.92 (12.53) 0.002

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
https://www.slicer.org/
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volume-based subcortical processing streams to seg-
ment, and parcellate the brain into 68 regions based on 
the Desikan-Killiany atlas [36]. To briefly summarize, 
this processing pipeline includes motion correction, 
intensity normalization, registration to Talairach space, 
removal of non-brain matter, cortical reconstruction, and 
segmentation of subcortical structures and white mat-
ter. Before final reconstruction was run, manual inter-
vention using control points were placed to minimize 
motion and hyperintensities that were not corrected by 
the automated pipeline. Details of manual intervention 
protocols can be found in McCarthy and colleagues [37]. 
Second reconstruction was then conducted considering 
any manual intervention. Final reconstruction steps were 
then run to complete the processing pipeline.

Functional data were preprocessed using statistical 
parametric mapping (SPM5; Wellcome Trust Centre for 
Neuroimaging, 2005, London, UK, http://www.fil.ion.ucl.
ac.uk/spm/ [38]). Images were visually inspected for the 
presence of significant signal dropout, ghosting, excessive 
noise, and any other artifact that would impact the abil-
ity to analyze the images. Visual inspection was repeated 
throughout different stages of preprocessing. Images 
were first motion corrected using INRIalign [39], an algo-
rithm that is unbiased by local signal changes. Motion 
adjustment, an algorithm that suppresses residual fluctu-
ations due to errors in interpolation from large motions 
was subsequently conducted using ArtRepair [40]. A 
despiking function was then applied to remove any spikes 
caused by motion. No participants were excluded due to 
motion based on the following criteria: > 2 mm across the 
entire run and rotation greater than 2°. One proband was 
excluded due to a significant signal dropout in the raw 
BOLD images, and no other participants were excluded 
for any other artifacts mentioned above.

Anatomical T1-weighted images from FreeSurfer, 
(including each ROI for both hemispheres) were then 
coregistered to the mean functional EPI image in SPM 
for each participant.

Functional connectivity analysis
Functional connectivity analyses were conducted utiliz-
ing the CONN toolbox (https://www.nitrc.org/projects/
conn [28]). This toolbox implements a CompCor method, 
which reduces physiological and movement effects: CSF 
and white matter effects, task-related effects, and rea-
lignment parameter noise without removing the global 
signal [29]. A band-pass filter of 0.008–0.09 was applied 
to the data. Realignment parameters from preprocess-
ing were entered as confounds in the first-level analysis. 
Using the Desikan-Killany atlas in FreeSurfer [36], which 
generates 34 bilateral, or 68 ROI’s, we conducted a seed-
based ROI-to-ROI analysis to create a 68 × 68 functional 

connectivity map. A bivariate correlation was used to 
determine total linear temporal associations between 
each of the resulting 2278 ROI-to-ROI functional con-
nections. Second-level analyses of group differences in 
functional connectivity between 22q11DS and controls 
was conducted through the CONN toolbox and FDR-
corrected, p < 0.05, two-tailed.

We then repeated the aforementioned ROI-to-ROI 
analysis to compare functional connectivity between pro-
dromal and nonprodromal participants with 22q11DS 
based on positive symptoms that were present at a fre-
quency of greater than once per week, and that obtained 
summed scores of ≥ 3 (reflecting intensity of the symp-
tom) on the Structured Interview for Prodromal Symp-
toms (SIPS; [32]) positive symptoms subscale. These 
criteria have been applied in previous studies of individu-
als with 22q11DS [20, 24].

Associations with positive symptoms
We then tested associations between positive symptom 
scores in 22q11DS (taken from summed scores of the 
SIPS Positive Symptoms subscale) and functional con-
nectivity values for ROI-to-ROI connections that were 
significantly different between individuals with 22q11DS 
and the control group. Functional connectivity values 
were taken from Fisher-transformed correlation coef-
ficients from the first-level analysis conducted in the 
CONN toolbox. Since many participants with 22q11DS 
scored 0 on the SIPS Positive Symptoms Scale (29 par-
ticipants, 53.7%), and since the SIPS produces a count 
variable, we conducted a zero-inflated Poisson (ZIP) 
regression analysis to examine these associations. Results 
were then FDR-corrected, p < 0.05.

Results
Second-level analyses of the functional connectome anal-
ysis revealed significant differences in functional con-
nectivity between 22q11DS and controls  (pFDR  <  0.05). 
(Table 3 and Fig. 1) At the lobar level, we observed differ-
ential connectivity between ROIs within frontal–frontal, 
frontal–occipital, frontal–parietal, occipital–occipital, 
and parietal–temporal regions.

Increased functional connectivity in 22Q11DS vs. controls
Within frontal–frontal connections, we observed increased 
functional connectivity in individuals with 22q11DS rela-
tive to controls between the right precentral gyrus and 
right posterior cingulate, right superior frontal gyrus to left 
posterior cingulate, and right superior frontal gyrus to right 
posterior cingulate. Table 3 displays differential functional 
connections between 22q11DS and controls at both the 
lobar and sublobar level as well as t values, corrected p val-
ues, and averaged functional connectivity values.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
https://www.nitrc.org/projects/conn
https://www.nitrc.org/projects/conn
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Increased functional connectivity was also observed 
in frontal–occipital connections: between the right pars 
orbitalis and left cuneus, right pars orbitalis and right 
cuneus, right pericalcarine and left paracentral gyri, and 
right pericalcarine and right postcentral gyri. Relative to 
controls, increased functional connectivity was again dis-
played within frontal-parietal connections: between the 
right precuneus to the right caudal middle frontal gyrus, 
left precuneus and right pars orbitalis, right precuneus 
and right pars orbitalis, left precuneus and right superior 
frontal gyrus, right precuneus and right superior frontal 
gyrus.

Reduced functional connectivity in 22Q11DS vs. controls
Reduced functional connectivity was observed between 
the right superior frontal gyrus and right lateral orbito-
frontal cortex. We also observed reduced functional con-
nectivity in 22q11DS in parietal-temporal connections: 
between the left superior parietal lobule and left fusiform 
gyrus and left superior parietal lobule and left inferior 
temporal lobe.

Functional connectivity within 22Q11DS
Between the nonprodromal and prodromal 22q11DS 
groups, we observed only one significant difference 
between groups: increased functional connectivity 
between the left inferior temporal and right pericalcarine 
gyri (t = 3.68,  pFDR = 0.038) (Fig. 2).

Associations with psychosis in 22q11DS
After correction for multiple comparisons,  (pFDR < 0.05) 
a ZIP regression analysis reported increased func-
tional connectivity between the left precuneus and right 
superior frontal was positively associated with positive 
symptoms (z = 5.72, p = 0.008). Reduced functional con-
nectivity between the right pericalcarine and left perical-
carine was positively associated with positive symptoms 
(z =  4.39, p =  0.008). Increased functional connectivity 
between the right pericalcarine and right postcentral 
were found to be negatively associated with positive psy-
chotic symptoms (z = − 2.95, p = 0.016) (see Fig. 3).

Heterogeneity effects in controls
Since seven of our controls in the current report were 
diagnosed with an anxiety disorder, depression, or 
ADHD, we conducted a separate functional connectivity 
analysis in CONN excluding those seven participants to 
account for any potential confounding effects in our FC 
results. Our findings remained significant after FDR cor-
rection, p < 0.05, and we continued to observe the same 
patterns of increased/decreased functional connectivity 
between the frontal–occipital, frontal–parietal, occipi-
tal–occipital, and superior parietal-inferior temporal 
connections. However, we did observe that once these 
controls were excluded, functional connectivity between 
frontal–frontal regions (superior frontal lobe–posterior 
cingulum; precentral gyrus–posterior cingulum) and one 

Table 3 Differential functional connectivity between 22q11DS and controls

Functional connections displayed within this table represent connections that were significantly different between 22q11DS and controls, FDR-corrected, p < 0.05
a Mean functional connectivity values reported for each study group

Functional connection (ROI–ROI)
22q11DS vs controls

Lobar-level connections t value p value, corr 22q11DSa controlsa

Right precentral–right posterior cingulate Frontal–frontal 3.59 0.038 0.232 0.067

Right superior frontal–left posterior cingulate Frontal–frontal 3.22 0.025 0.230 0.036

Right superior frontal–right posterior cingulate Frontal–frontal 3.23 0.025 0.411 0.212

Right pars orbitalis–left cuneus Frontal–occipital 3.79 0.019 0.011 − 0.187

Right pars orbitalis––right cuneus Frontal–occipital 3.44 0.022 0.021 − 0.146

Right pericalcarine–left paracentral Frontal–occipital 3.42 0.033 − 0.013 − 0.173

Right pericalcarine–right postcentral Frontal–occipital 3.27 0.035 − 0.013 − 0.159

Right precuneus–right caudal middle frontal Frontal–parietal 4.04 0.008 0.281 0.054

Left Precuneus–right pars orbitalis Frontal–parietal 3.42 0.033 − 0.109 − 0.313

Right precuneus–right pars orbitalis Frontal–parietal 3.23 0.04 0.014 − 0.174

Left precuneus–right superior frontal Frontal–parietal 4.06 0.008 0.110 − 0.113

Right precuneus–right superior frontal Frontal–parietal 3.30 0.04 0.289 0.092

Right superior frontal–right lateral orbito frontal gyrus Frontal–frontal − 3.37 0.025 0.102 0.312

Right pericalcarine–left pericalcarine Occipital–occipital − 3.98 0.01 1.254 1.488

Left superior parietal–left fusiform Parietal–temporal − 3.55 0.021 0.208 0.382

Left superior parietal–left inferior temporal gyrus Parietal–temporal − 3.63 0.021 0.156 0.379
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frontal–parietal connection (pars orbitalis–precuneus) 
no longer met threshold for significance.

Discussion
Using a seed-based connectivity analysis of 2278 ROI-
to-ROI connections, we observed both hyper- and hypo-
connectivity in frontal–frontal gyri, frontal–parietal gyri, 
frontal–occipital gyri, parietal–temporal gyri and occipi-
tal–occipital gyri in young adults with 22q11DS rela-
tive to controls. Notable findings included (1) increased 
functional connectivity between frontal (superior fron-
tal, caudal middle frontal and pars orbitalis) gyri and 
the precuneus, and (2) increased functional connectiv-
ity between posterior cingulate gyrus and both superior 
frontal and precentral gyri. Anomalies in frontal–parietal 
and occipital–occipital gyral connectivity were signifi-
cantly associated with positive symptoms of psychosis.

The precuneus, caudal middle frontal and pars orbit-
alis (i.e., medial inferior frontal) regions constitute part 

of the default mode network (DMN), which as noted 
above, is reported to be anomalous in both schizophrenia 
and 22q11DS. Studies have demonstrated that the DMN 
is active not only during rest but also during activities 
involving self-referential [41] and social-interpersonal 
processing [42]. Evidence suggests that the DMN may 
be involved in auditory hallucinations in individuals 
with schizophrenia [43–45], although other networks 
have been implicated as well [46, 47]. In individuals with 
22q11DS, the DMN has been associated with prodromal 
symptoms [21], sustained attention [21] and recipro-
cal social behaviors [23]. It is not clear why we observed 
increased functional connectivity between these DMN 
regions, while several other studies [23–26] of 22q11DS 
have observed decreased functional connectivity 
between these regions. This may be attributable, in part, 
to our implementation of measurements within each 
subject’s native brain space. In light of the anatomic dif-
ferences that have been reported in brains of individuals 

Fig. 1 This figure depicts significant differences in functional connectivity between 22q11DS and control samples. The color bar represents t values 
of results in axial (top) and left and right sagittal views. Red indicates increased FC in 22q11DS and blue indicates reduced FC in 22q11DS
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with 22q11Ds, retaining each subject’s native brain space 
may have produced results that are not totally (anatomi-
cally) comparable to studies in which brains are warped 
to a standard template. Moreover, potential differences in 
sample characteristics (e.g. IQ levels; medication usage) 
between studies may also be contributing to differences 
in the direction of these results (see review by Scariati 

and colleagues [19]). Additional insight into why our find-
ing of increased functional connectivity in the DMN dif-
fers from several (but not all [21, 22]) studies of 22q11DS 
is suggested by the results of two previously-published 
papers [22, 24] that included samples that overlapped 
with the sample of the current. In our two previously-
published papers, we pooled samples from two research 

Fig. 2 This figure depicts differential functional connectivity between prodromal and nonprodromal (prodromal > nonprodromal) 22q11DS sam-
ples represented by left sagittal and superior axial views

Fig. 3 This figure depicts plots representing associations between total positive symptoms scores measured by the SIPS and functional connectiv-
ity in connections that were significantly different between 22q11DS and controls



Page 8 of 11Mattiaccio et al. Behav Brain Funct  (2018) 14:2 

sites, and applied Independent Components Analyses 
to the pooled data. However, preprocessing methods 
differed somewhat between the two papers. In the first 
paper, by Mattiaccio and colleagues [22], for which data 
were preprocessed and analyzed at our site, increased 
functional connectivity in the DMN was observed. In 
the second paper, by Schreiner and colleagues [24], the 
data were preprocessed and analyzed by our collaborat-
ing site, and decreases in functional connectivity in the 
DMN were observed. Interestingly, our respective sites’ 
preprocessing methods differed in motion correction and 
noise reduction strategies, potentially accounting for the 
discrepancies in results. This supports the notion that 
differences in image processing methods and in sample 
characteristics may be contributing to between-study dif-
ferences in results.

The posterior cingulate gyrus (PCG) is also part of the 
default mode network, and we found anomalies in con-
nectivity between PCG and superior frontal and pre-
central gyri. The extent to which PCG—superior frontal 
connections in our study reflects the DMN is not com-
pletely clear, since we utilized a predefined, atlas-based 
approach that maps onto regions that subsume, but are 
not synonymous with the DMN. Nonetheless, primate 
(and more recently, human imaging) studies indicate 
that the PCG has strong, reciprocal connections to the 
dorsolateral prefrontal cortex (DLPFC) [48–50], which 
overlaps with the superior frontal region included in the 
Desikan-Killany atlas. It has been suggested that PCG-
DLPFC connections may be part of both the dorsal atten-
tion network and the frontal-parietal control network 
[51] both of which contribute to efficient cognitive func-
tion. Functional connectivity of the PCG and the superior 
aspect of the DLPFC has been linked to goal-directed 
thought processes [52], suggesting that this reciprocal 
connection may subserve executive planning [53, 54] and 
cognitive control [53, 55], both of which are impaired in 
individuals with 22q11DS [56–59]. Moreover, these func-
tional brain networks have been shown to be impaired in 
schizophrenia [14, 60, 61] and 22q11DS [22, 24, 62].

Of the 16 ROI-to-ROI connections that significantly 
differentiated individuals with 22q11DS from controls, 
13 (81%) of them included at least one ROI in the frontal 
lobe. These findings are consistent with other functional 
connectivity studies of both idiopathic schizophrenia [7, 
12, 13, 63] and 22q11DS [20, 23] and suggest that both 
short-range and long-range connectivity of the fron-
tal lobe is anomalous in individuals with this syndrome. 
To the extent that the frontal lobe subserves a myriad of 
cognitive and social-affective functions, functional dys-
connectivity of networks that include the frontal lobe 
could underlie many of the cognitive and psychiatric 

impairments that are associated with 22q11DS [20, 23]. 
For example, in addition to schizophrenia, frontal dys-
connectivity has been implicated in both autism spec-
trum disorders and in ADHD, both of which are elevated 
in 22q11DS [5, 57, 64–68].

In our sample, positive prodromal symptoms of psy-
chosis were associated with increased connectivity 
between the superior frontal gyrus and the precuneus, 
and with decreased connectivity between the right and 
left pericalcarine gyri of the occipital lobe, and between 
pericalcarine and postcentral gyri. As noted above, the 
precuneus and aspects of the superior frontal gyrus are 
included in the DMN, which previous studies of 22q11DS 
have associated prodromal symptoms as well [21]. Asso-
ciations between parietal–occipital and occipital–occipi-
tal functional connections and prodromal symptoms of 
psychosis have not been reported. However, anatomic 
connections between parietal and occipital lobes, via 
the superior longitudinal fasciculus (SLF), have been 
reported to be aberrant in 22q11DS [69–72]. Moreo-
ver, in an overlapping sample, our group [73] recently 
reported associations between anatomic anomalies in the 
SLF and prodromal symptoms.

When we divided the group of individuals with 
22q11DS into prodromal and nonprodromal subgroups, 
we observed a significant difference in connectivity 
between the left inferior temporal and right pericalcar-
ine gyri. Interestingly, we recently reported (in the same 
patient sample) significant associations between white 
matter microstructural anomalies in the temporal-occip-
ital aspect of the inferior longitudinal fasciculus and 
symptoms of psychosis [74]. Temporal-occipital altera-
tions in functional connectivity have also been reported 
in patients experiencing their first episode of psychosis 
[75], further supporting the validity of these observations.

Limitations and conclusions
Our study utilized an atlas-based approach to investi-
gate functional connectivity in 22q11DS, which permit-
ted us to examine, within each individual’s own fMRI 
space, more than 2000 functional connections through-
out the cortex. A potential limitation to our method is 
that the acquisition time of 5 min that we used to acquire 
our fMRI data, while minimally acceptable for an fcMRI 
study, may not be optimal in order to minimize the 
effects of noise and ensure the detection of small correla-
tions that might otherwise go unobserved [76]. A second 
potential limitation is that the connections we examined 
do not necessarily map specifically onto the networks 
that are traditionally examined in resting state fcMRI 
studies, thus limiting comparisons to other studies to 
some extent, and rendering conclusions regarding these 
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comparisons somewhat speculative. Nonetheless, our 
results concur generally with previous studies that have 
observed DMN anomalies in 22q11DS and associations 
between DMN anomalies and prodromal symptoms of 
psychosis. However, we observed increased functional 
connectivity in DMN regions, in contrast to several pre-
vious studies that have observed reduced connectivity. 
As noted above, this may be due in part to the potential 
impact of current medication usage in our sample, and to 
study differences in image preprocessing. In addition, it 
should be noted that when we removed the subset of con-
trols with ADHD and anxiety, study group differences in 
the connections between the PCG and both the superior 
frontal and precentral gyri did not survive correction for 
multiple comparisons. This may suggest that the presence 
of psychiatric disorders in our sample may be influencing 
our observation of study group differences in connectiv-
ity between PCG and other frontal-based regions; how-
ever, the removal of the control subgroup also reduced 
power to detect differences. Accordingly, future stud-
ies would benefit from larger samples to elucidate the 
potential interplay between the presence of psychiatric 
disorders in 22q11DS and functional connectivity. To the 
extent that sampling and image preprocessing differences 
account for discrepancies across studies, it would be use-
ful, in general, to apply different preprocessing methods 
to identical samples in order to elucidate the extent to 
which these methods account for differences in results of 
functional connectivity studies. Within the area of neu-
rofunction in 22q11DS, future studies should examine 
the associations between functional and structural con-
nectivity in 22q11DS, in order to elucidate the extent 
to which neuroanatomic structure underlies functional 
anomalies and leads to the psychiatric impairments for 
which individuals with this disorder are at great risk.
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