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Abstract 

Developing mammals are exposed to progesterone through several sources; however, the role of progesterone in 
early development is not well understood. Males express more progestin receptors (PRs) than females within several 
brain regions during early postnatal life, suggesting that PRs may be important for the organization of the sex differ‑
ences in the brain and behavior. Indeed, previous studies showed cognitive impairments in male rats treated neona‑
tally with a PR antagonist. In the present study, we examined the role of PRs in organizing juvenile behaviors. Social 
play behavior and social discrimination were examined in juvenile male and female rats that had been treated with 
CDB, a PR antagonist, during the first week of postnatal life. Interestingly, neonatal PR antagonism altered different 
juvenile behaviors in males and females. A transient disruption in PR signaling during development had no effect on 
social discrimination but increased play initiation and pins in females. These data suggest that PRs play an important 
role in the organization of sex differences in some social behaviors.
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Introduction
While it is clear that testosterone and its metabolites play 
an important role in the organization of the male brain 
and behavior through their actions on androgen recep-
tors and estrogen receptors [1], less is known about the 
role of progesterone acting upon progestin receptors 
(PRs) in the developing brain.

Developing mammals are exposed to progesterone, 
both from fetal and maternal sources (reviewed in [2, 
3]). Indeed, male and female rodents have approximately 
equivalent levels of circulating progesterone during 
development [4, 5]. Furthermore, progesterone adminis-
tration is also commonly used as a contraceptive in lac-
tating women and during pregnancy for prevention of 
premature birth and (reviewed in [6]).

Males express PRs as early as embryonic day 20 in 
many brain areas [7] and express more PRs than females 
within several hypothalamic regions on postnatal day 
(PN)1 but not PN10 [8, 9]. This sex difference in PRs in 
the developing brain suggests that PRs are important 
for the organization of the sex differences in the brain. 
Indeed, blocking PRs using RU-486 during development 
increases male sex behavior and the expression of ARs 
in several regions of the adult male brain [10], although 
another study using a different PR antagonist, ZK 
137616, found no effect on male mouse sex behavior [11]. 
Neonatal PR antagonism using RU-486 also disrupts cog-
nitive ability in adult male rats [12]. It should be noted 
that RU-498 also binds glucocorticoid receptors, mak-
ing the role of PRs during development even less clear. 
CDB-4124 is a PR antagonist with a low binding affinity 
for glucocorticoid receptors [13] that has been shown to 
affect forced swim immobility in adult mice [14].
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Several studies have also examined the role of proges-
tins in the organization of social behaviors. For example, 
neonatal progesterone administration increased play in 
both sexes [15], while progestin antiserum decreased play 
only in females [16]. Progesterone has also been demon-
strated to play a role in adult male social behaviors. For 
example, progesterone administration has been found 
to disrupt social recognition in adult males [17], while a 
more recent study showed the opposite [18].

In the present study, we examined the organizational 
role of PRs on juvenile social discrimination and juvenile 
social play behavior by treating male and female rats with 
CDB, a specific PR antagonist, during the first week of 
postnatal life.

Methods and materials
Subjects and treatment
Sprague–Dawley rats supplied by Charles River Labs 
were bred in our animal facility. Animals were housed in 
standard lab cages with aspen shavings and no enrich-
ment. Dams were checked daily to determine the day of 
birth and were allowed to deliver normally. Twenty-seven 
male and 25 female pups were pooled from five different 
litters and randomly assigned to each treatment group 
(13 CDB-treated females, 12 oil-treated females, 13 
CDB-treated males, and 14 oil-treated males). Each lit-
ter contained animals of both sexes and treatment groups 
and a maximum of three animals from a single litter 
were assigned to each treatment group. Pups were foot-
marked with India ink and treated subcutaneously with 
the 75 g/0.01 mL/g body of the PR antagonist CDB-4124 
or vehicle on PN0 (day of birth), PN2 and PN4. The vehi-
cle was composed of 0.2% benzyl alcohol and 0.6% benzyl 
benzoate in sesame oil. This treatment regimen is similar 
to what has been previously used for RU-486 [10]; how-
ever, we chose to reduce the number of administrations 
in order to minimize the injections. We have found that 
the sesame oil does not clear within a day, so treatment 
was likely continuous from ~ PN0-PN6. The weight of the 
pups ranged from 5 to 12 g over the three days of treat-
ment. CDB-4124 was used because it has a low binding 

affinity for glucocorticoid receptors [13]. The dose of 
CDB-4124 is within the range of what has previously had 
an effect on forced swim immobility in adult mice [14].

All pups remained with dams until weaning at PN21. 
On PN21, pups were separated into seven cages of six 
animals and two cages of five animals. In order to mini-
mize litter effects, each cage contained 1–2 animals from 
each treatment group (i.e., CDB-treated females, CDB-
treated males, vehicle-treated females, vehicle-treated 
males) and approximately half females and half males. An 
overview timeline of the experiment is shown in Fig.  1. 
The rats were housed under a 12:12 light/dark cycle with 
food and water available ad  libitum. This research was 
approved by the University of Wisconsin Institutional 
Animal Care and Use Committee.

Behavioral testing
Behavioral tests were performed under dim red light 
approximately 1–2  h after the beginning of the dark 
phase of the light cycle. Each behavior was recorded 
and then analyzed by a trained technician blind to all 
treatments using The  Observer® (Noldus Information 
Technologies) or Stopwatch + (Center for Behavioral 
Neuroscience, Atlanta, GA).

Social play behavior
The play behavior paradigm and scoring criteria were 
adapted from previous studies [19, 20] which both use 
the focal observation method to capture a “snapshot” of 
the play occurring in each home cage. On PN25-29, play 
behavior was digitally recorded in two 4-min sessions 
per day in the home cage covered with a clear plastic lid. 
One play session was 2 h after the beginning of the dark 
period and one play session was 4 h after the beginning 
of the dark session. Therefore, we recorded 8-min of play 
occurring in each home cage every day for five days, for 
40 min total. There were 5–6 animals in each cage, ran-
domly numbered and coded by tail marks. An observer 
blind to the treatment groups scored the recordings for 
the following individual behaviors: pin, pounce, bite, and 
chase. The frequency of each play behavior was calculated 

PN33 or 34: 
social 
discrimination

PN0, 2, 4: PR 
antagonism PN21: 

Wean

PN25-29: 
Play behavior

Fig. 1 Experimental overview. Male and female rats were injected with the PR antagonist CDB or vehicle control on PN0, 2, and 4 then weaned into 
mixed‑sex cages of 5–6 on PN21. Play behavior was observed in the home cage from PN25‑29 and social discrimination was measured on PN33 or 
PN34
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by summing each animal’s play behaviors over the entire 
observation time. While there are different methods used 
to analyze play behavior, frequency of play behaviors is 
the most common [21]. The animals from one cage were 
not used in the final analysis because this cage contained 
animals of two different ages and social play changes 
with age [22, 23]. Animal numbers for play behavior were 
therefore 12 CDB-treated females, 11 oil-treated females, 
12 CDB-treated males, and 11 oil-treated males).

Social discrimination
On PN33 or PN34, rats were tested for social discrimi-
nation. Although it is typical to isolate adult animals for 
1–10  days prior to testing [17, 24, 25], we isolated the 
juvenile animals for only 4 h in this study, as social isola-
tion is considered a severe stressor for juvenile animals 
[26]. In trial 1, an age and sex-matched juvenile stimu-
lus rat was placed in the home cage of the experimen-
tal animal and the experimental animal was allowed to 
freely investigate for five minutes. After five minutes, the 
stimulus juvenile was removed and the experimental ani-
mal was alone in its cage for 30  min. After this 30-min 
intertrial interval, the stimulus juvenile from trial 1 and 
a stimulus novel juvenile were placed in the experimental 
animal’s cage, and the experimental animal was again free 
to investigate for five minutes. The juvenile stimulus rats 
were distinguishable by unique tail marks drawn with 
permanent marker. Investigation of the stimulus juve-
niles was scored two ways: (1) body investigations, which 
included direct contact between the nose of the experi-
mental animal and the body of the stimulus juvenile; and 
(2) anogenital investigations, which included direct con-
tact between the nose of the experimental animal and the 

anogenital region of the stimulus juvenile. Percent novel 
investigation was calculated by dividing the time spent 
investigating the novel animal divided by the time spent 
investigating either animal, multiplied by 100. Percent-
ages greater than 50% indicate discrimination and larger 
scores indicate better discrimination. Animal numbers 
for social discrimination were 13 CDB-treated females, 
12 oil-treated females, 13 CDB-treated males, and 14 oil-
treated males.

Statistical analyses
All statistical comparisons were carried out using SPSS v. 
28 (IMB). Statistical comparisons were carried out using 
a two-way ANOVA and simple main effects were con-
ducted to examine pairwise comparisons of the effect of 
treatment within each sex. Partial eta squared (Ŋ2) was 
used to estimate effect size, with Ŋ2 = 0.06 indicating a 
medium effect size and Ŋ2 = 0.14 indicating a large effect 
size [27].

Results
Social play behavior
There was no main effect of sex [F(1,47) = 3.1, p = 0.09, 
Ŋ2 = 0.07] or treatment F(1,47) = 0.52, p = 0.48, Ŋ2 = 0.01 
on the initiation of play behavior; however, the interac-
tion between sex approached significance [F(1,47) = 3.9, 
p = 0.05, Ŋ2 = 0.08, Fig. 2A]. Simple main effects indicate 
that the effect of CDB in females approached significance 
(p = 0.06), while there was no effect of CDB in males 
(p = 0.37). There was a main effect of sex [F(1,47) = 5.4; 
p = 0.03, Ŋ2 = 0.11] on pins, while the main effect of 
treatment [F(1,47) = 3.3; p = 0.08, Ŋ2 = 0.07] and interac-
tion between sex and treatment [F(1,47) = 2.8, p = 0.09, 

Fig. 2 Social play in juvenile rats injected with CDB or control vehicle on PN0, 2, and 4. Each bar represents the mean total number of instances of 
play. Error bars represent 2× SEM. A The interaction between sex and CDB treatment on play initiation approached significance (p = 0.05, Ŋ2 = 0.08). 
Simple main effects indicate that the effect of CDB in females approached significance (*p = 0.06), while there was no effect of CDB in males 
(p = 0.37). B There was a main effect of sex (p = 0.03, Ŋ2 = 0.11), while the main effect of treatment (p = 0.08, Ŋ2 = 0.07) and interaction between sex 
and treatment (p = 0.09, Ŋ2 = 0.06) approached significance (p = 0.05, Ŋ2 = 0.08). Simple main effects indicate CDB‑treated females pinned more 
than control females (*p = 0.02), while there was no effect of CDB in males (p = 0.93)
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Ŋ2 = 0.06] approached significance (Fig. 2B). Simple main 
effects indicate CDB-treated females pinned more than 
control females (p = 0.02), while there was no effect of 
CDB in males (p = 0.93). There were no main effects or 
interactions on pounces or chases (Table  1). Bites were 
observed only several times total, so these were not ana-
lyzed independently.

Frequency of play parameters (mean ± standard error).

Social discrimination
There was no effect of sex [F(1,50) = 0.47; p = 0.50] or 
treatment [F(1,50) = 2.5; p = 0.12] on percent novel 
anogenital investigations (Fig.  3A) and no effect of sex 
[F(1,50) = 0.36; p = 0.42] or treatment [F(1,50) = 1.1; 
p = 0.75] on percent novel body investigations (Fig. 3B).

Discussion
In the present study, males initiated play more than 
females and exhibited more pins, which is consist-
ent with much of the previous literature using focal 
observation [19, 21, 28]. Additionally, the interaction 
between sex and treatment approached significance. 
Specifically, it appears that neonatal PR antagonism 
increased play initiation and pins in females, with 
no effect in males. Interestingly, there were no sex or 

treatment effects on chases or pounces, suggesting that 
the increase in play initiation in CDB-treated females 
is driven primarily by increases in pins. The reason for 
this is unclear, but it is particularly interesting given 
that pinning may be indicative of dominance [21, 29]. 
These results are also consistent with a recent study 
demonstrating a sex difference in pins and total play, 
but not chases, in both mixed-sex and same-sex pairs 
[30]. On the other hand, there was no effect on social 
discrimination following neonatal PR antagonism.

As antagonizing PRs during early life increases pins 
and play initiation in females, PR signaling may play 
a role in organizing female social play behavior. Even 
though levels of PRs in the developing female brain are 
lower than levels in the developing male brain, their 
action may be important for preventing masculiniza-
tion in females. That is, during the first week of post-
natal life, PRs appear to be important for establishing 
female-typical levels of play. Although previous data 
have demonstrated that PRs regulate social behavior 
in adults [17, 25], the present study is the first to show 
effects on juvenile social play behavior following a tran-
sient neonatal manipulation of PRs. Effect sizes for all 
reported statistics are in the medium-large range.

Table 1 Total frequency of play behaviors from PN25‑29, recorded for 8 min per day (40 min total) in the home cage

There were no effects of sex or treatment on chases or pounces
a Control females exhibited fewer pins and total initiation behaviors compared to CDB‑treated females, as shown in Fig. 2

Play parameter Control males Control females CDB males CDB females

Pounces 7.6 ± 1.0 5.5 ± 0.9 6.2 ± 2 6.5 ± 0.9

Pins 4.8 ± 0.7 2.2 ± 0.5a 4.9 ± 0.6 4.5 ± 0.9

Chases 0.9 ± 0.3 0.3 ± 0.2 0.4 ± 0.2 0.7 ± 0.2

Initiation 13.3 ± 1.7 7.9 ± 1.5a 11.5 ± 1.2 11.8 ± 1.6

Fig. 3 There were no effects of sex or treatment on social discrimination in juvenile rats injected with CDB or control vehicle on PN0, 2, and 4. 
Error bars represent 2× SEM. Each bar represents the mean percent of time that each group performed anogenital (AG) investigations (A) or body 
investigations (B) with the novel animal, with percentages greater than 50% indicating discrimination
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The mechanism for the increase in play in females fol-
lowing neonatal manipulation of PRs is unclear, as little is 
known about the role of PRs in the developing postnatal 
female brain. Manipulation of PRs may affect a variety of 
signaling molecules, such as arginine vasopressin, opi-
oids, endocannabinoids, dopamine, norepinephrine, ser-
otonin, and GABA, which are all involved in social play 
behavior [31–33]. Prior studies have found an increase in 
arginine vasopressin expression in the lateral habenula of 
PR knockout mice [34], but it is unclear if these effects 
are due to altered PRs in development or adulthood. Fur-
ther studies are necessary to elucidate the relationship 
between PRs and juvenile social play.

In the present study, there was no effect on social dis-
crimination following neonatal PR antagonism. Although 
previous data have demonstrated that PRs regulate social 
discrimination in adult male rats [17, 25], the present 
data suggest that PRs do not play an organizational role 
in this behavior during the first week of postnatal life. It 
should be noted that social discrimination is a complex 
behavior, and several other signaling molecules have been 
shown to play a role in social discrimination, including 
oxytocin [35–37] and arginine vasopressin [24, 38–40].

To my knowledge, the present study is the first to 
examine the specific role of PRs during early develop-
ment on juvenile social behaviors. In females, there was 
an increase in play initiation, while there was no effect in 
males. Future studies should examine the role of neona-
tal PRs on the neurobiology of the brain and behavior in 
both juvenile and adult animals.
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