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Abstract 

Background Novel flavors elicit a cautious neophobic response which is attenuated as the flavor becomes familiar 
and safe. The attenuation of neophobia reveals the formation of a safe memory. Previous lesion studies in rats have 
reported that basolateral amygdala integrity is required for taste neophobia, but not neophobia to flavor, i.e., taste 
linked to an odorous component. Accordingly, immunohistochemical analyses show that novel tastes induced higher 
basolateral amygdala activity when compared to familiar ones. However, a different role of basolateral amygdala in 
flavor attenuation of neophobia is suggested by lesion studies using a vinegar solution. Studies assessing basolateral 
amygdala activity during flavor attenuation of neophobia are lacking. Thus, we quantified cytochrome oxidase as an 
index of basolateral amygdala activity along the first and second vinegar exposures in order to assess flavor neopho‑
bia and attenuation of neophobia.

Methods We exposed adult male Wistar rats either once or twice to a 3% cider vinegar solution or water, and com‑
pared the basolateral amygdala, piriform cortex and caudate putamen brain metabolic activity using cytochrome 
c‑oxidase histochemistry.

Results We found increased flavor intake and cytochrome c‑oxidase histochemistry activity during the second expo‑
sure in basolateral amygdala, but not in the piriform cortex and caudate/putamen.

Conclusions The main finding of the study is that BLA metabolic activity was higher in the group exposed to a famil‑
iar vinegar solution than in the groups exposed to either water or a novel vinegar solution.

Keywords Amygdala, Attenuation of neophobia, Cytochrome c oxidase, Flavor, Neophobia, Taste

†S. Menchén‑Márquez and M. Banqueri contributed equally to this work and 
they should both be considered as first authors

*Correspondence:
Sergio Menchén‑Márquez
smenchen@ugr.es
1 Department of Psychobiology, Institute of Neurosciences, Center 
for Biomedical Research (CIBM), University of Granada, Parque 
Tecnológico de la Salud (PTS), Avda del Conocimiento, s/n, Armilla, 
18016 Granada, Spain
2 Instituto de Investigación Biosanitaria (IBS), Granada, Spain
3 Laboratory of Neuroscience, Department of Psychology, University 
of Oviedo, Oviedo, Spain
4 Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh, 
UK

5 Instituto de Neurociencias del Principado de Asturias (INEUROPA), 
University of Oviedo, Oviedo, Spain
6 Department of Didactics, Area of Didactics of Experimental Sciences, 
Faculty of Education Sciences, University of Cádiz, Cádiz, Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12993-023-00206-x&domain=pdf


Page 2 of 6Menchén‑Márquez et al. Behavioral and Brain Functions            (2023) 19:2 

Introduction
The ability to recognize familiar flavors which have been 
safe in previous encounters is critical for diet selec-
tion and survival. A novel flavor induces a neophobic 
response that is attenuated in a second exposure to the 
flavor without negative consequences, thus leading to 
increased consumption. The attenuation of neophobia 
(AN) requires the integrity of the perirhinal cortex (Prh), 
a brain area involved in taste and object recognition 
memory. Accordingly, Prh excitotoxic [1] and lidocaine-
reversible lesions [2] interfere with the increased con-
sumption during the second presentation of vinegar and 
saccharin solutions, respectively. We have also previously 
reported a similar impairment induced by basolateral 
amygdala (BLA) excitotoxic lesions. These lesions disrupt 
the pattern of Prh activity associated with AN during the 
second exposure to the vinegar solution [3]. Nonetheless, 
the critical mechanism disrupted is not yet known.

There is evidence supporting the BLA involvement 
in taste novelty detection. In fact, BLA permanent and 
reversible lesions have been found to interfere with neo-
phobia to a 0.5% sodium saccharin solution [4, 5] and 
c-Fos expression induced in BLA by a novel saccharin 
solution is higher than that induced by a familiar one [6]. 
However, Lin and colleagues [4] did not find effects of 
BLA lesions on odor neophobia using a 0.1% amyl ace-
tate solution. This is a relevant issue, since taste is rarely 
found isolated under natural conditions, but it is associ-
ated with other components, such as odor, becoming 
more appropriate to use the term “flavor”. Indeed, using 
a cider vinegar solution, a flavor which contains the ace-
tic acid odorous component, we have reported increased 
activity during the second exposure in the nucleus 
accumbens shell [7] and the medial prefrontal cortex [8]. 
However, there is no data about the role of BLA in the 
vinegar familiarization process.

Cytochrome oxidase (CCO) is a marker of neural activ-
ity that indicates ATP increases and decreases according 
to the oxidative metabolic activity requirements. Thus, 
unlike other markers, CCO allows us to detect not only 
increases but decreases of brain activity. This technique 
has been previously applied to assess changes of the 
brain metabolic activity associated with taste familiarity 
on aversive conditioning using a latent inhibition proce-
dure [9]. Likewise, CCO histochemistry has proven to be 
of great value to map functional brain networks involved 
in spatial learning acquisition [10, 11], retrieval [12] and 
extinction [11]. It is also sensitive to the effect of various 
treatments on spatial memory, such as social isolation 
[13], maternal separation [14], exercise [15] and pharma-
cological interventions [16].

Hence, CCO quantification during the first and sec-
ond vinegar exposures would allow us to assess the 

potential BLA involvement either in the detection of 
flavor novelty or flavor familiarization. Increases of the 
BLA metabolic activity during the first flavor exposure 
would support a role in novelty detection. This would 
be consistent with the results found using a purely 
taste solution. On the other hand, increases of the BLA 
metabolic activity during the second flavor exposure 
would point to a role in flavor familiarization. This 
would be in accordance with the reported AN disrup-
tion by BLA lesions. Given the odorous component 
of the flavor used, the metabolic activity of the olfac-
tory piriform cortex (Pir) as well as caudate/putamen 
(Cpu) as additional control areas was assessed. No sex 
differences have been reported either in vinegar neo-
phobia or AN using the present behavioral procedure 
[17]. Hence, male rats were used for allowing compari-
son with previous results on brain activity, thus reduc-
ing the number of animals used. Additionally, the use 
of males avoids mildly invasive procedures required for 
assessing the estrus cycle.

Material and methods
Behavioral procedure
Twenty-one naive adult male Wistar rats were individu-
ally housed and maintained in a 12-h-light-dark cycle 
(8:00–20:00 h). Food was available ad libitum but access 
to water was restricted to the daily experimental 15-min 
drinking sessions at 10:00  h and to a daily additional 
20-min rehydration session at 16:00  h. Water Baseline 
(BL) was recorded during the morning sessions in which 
the rats were handled for 3–5 min after BL1, BL3 and BL5 
in order to avoid stress. After the water intake baseline, 
the animals were randomly assigned to one of the follow-
ing groups: Novel (n = 8), Familiar (n = 5) and Control 
(n = 8). A cider vinegar solution (3%) was available during 
one (Novel) or two (Familiar) experimental sessions. The 
control group drank water throughout the experiment.

Ninety minutes after the experimental session each 
animal was sacrificed, the brain was removed and quickly 
frozen in isopentane (2-methylbutane; Sigma-Aldrich, 
Germany) to be stored at −  80 ºC. Brain coronal Sec-
tions (20 µm) were cut in a cryostat (Microm, HM505E, 
Germany). From each brain, sixty sections were taken in 
order to assess CCO in BLA, Cpu and Pir. The stereotaxic 
coordinates of the brain areas assessed according to the 
Paxinos and Watson atlas [18] are shown in Fig. 1.

The procedures were approved by the University of 
Granada Ethics Committee for Animal Research and by 
the Regional Ministry of Agriculture, Fisheries and Rural 
Development of Andalusia (17-02-15-195), following the 
ARRIVE guidelines and in accordance with the EU Direc-
tive 2010/63/EU for animal experiments.
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CCO histochemistry
The procedure for quantitative CCO histochemistry has 
been described elsewhere [13, 19]. In brief, after obtain-
ing sets of tissue homogenate standards from the Wistar 
rat at different thicknesses (10, 30, 50 and 70 µm) in order 
to quantify the enzymatic activity, both sections and 
standards were incubated for 5 min in 0.1 M phosphate 
buffer (7.6 pH) with 10% sucrose (w/v) and 5% glutaral-
dehyde (v/v) (Merck, Germany). The slides were then 
rinsed 3 × in a 0.01  M phosphate buffer (7.6 pH) with 
10% sucrose (w/v) and 0.05 M Tris buffer (7.6 pH) with 
275  mg/L hexahydrated cobalt chloride, 10% sucrose 
(w/v), and 0.5% dimethylsulfoxide (v/v) for 10 min. This 
was followed by 1 × 0.01  M phosphate buffer (7.6 pH). 
Then, the sections and standards were incubated in 
0.0075% cytochrome-c (w/v), 0.002% catalase (v/v), 5% 
sucrose (w/v), 0.25% dimethylsulfoxide (v/v) and 0.05% 
diaminobenzidine tetrahydrochloride (Sigma-Aldrich, 
Madrid, Spain). Both sections and standards were incu-
bated for 5 min in 0.1 phosphate buffer (7.6 pH), at 37 ºC 
for 1 h. The reaction was stopped by fixing the tissue in 
buffered 4% (v/v) formalin 30 min RT. Finally, the slides 
were dehydrated, cleared with xylol and cover-slipped 
with Entellan (Merck, Germany). The intensity of the 
CCO staining was quantified through an optic densitom-
etry analysis using a computerized image analysis system 
(MCID Elite, Interfocus Imaging Ltd., United Kingdom). 
The mean optical density (OD) of each region was meas-
ured in the right hemisphere using three consecutive 
sections. In each section, four non-overlapping read-
ings were taken using a square-shaped sampling window 
that was adjusted for each region size, taking a total of 

12 measurements per region and subject. These regions 
were averaged to obtain one mean per region for each 
animal. Then, OD values were converted to CCO activity 
units determined through the enzymatic activity of the 
standards measured spectrometrically. 

Experimental design and statistical analyses
Flavor neophobia and AN were assessed using a two-fac-
tor mixed ANOVA design that includes a between-groups 
factor Group with 2 levels (Control group drinking water; 
Familiar group drinking vinegar twice) and a within-sub-
jects factor Days with 3 levels (Water baseline, first vine-
gar exposure, second vinegar exposure), being the rat ID 
the random factor (animals were randomly assigned to 
groups). Post-hoc Bonferroni tests were applied.

Given the need to sacrifice the animals for assess-
ing brain CCO activity, an additional Novel group was 
required. Thus, a two-factor mixed ANOVA design was 
applied including a between-groups factor Group with 3 
levels (Control group drinking water; Novel group drink-
ing vinegar once, Familiar group drinking vinegar twice) 
and a within-subjects factor Region of Interest (ROI) with 
3 levels (BLA, Cpu, Pir). Again, since animals were ran-
domly assigned to the groups, rat ID was the random fac-
tor. Post-hoc comparisons were performed with post-hoc 
Bonferroni tests.

Results
Figure  2 shows the mean (± SEM) intake of the Famil-
iar group drinking the 3% cider vinegar solution that 
evidence the neophobic response and its attenuation on 
the second presentation in comparison with the Control 

Fig. 1 Anatomical location of Regions of Interest. BLA = Basolateral amygdala (− 2.52 mm), Cpu = Caudate/Putamen (− 0.12 mm), Pir = Piriform 
cortex (− 2.52 mm). Anteroposterior coordinates according to bregma [17]. All coordinates were taken from coronal brain slices
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group drinking water. A mixed 2 (Group) × 3 (Days) 
ANOVA analysis showed a within-subject Day effect 
[F(2, 18) = 41.121, p = 0.001, ηp

2 = 0.820] and interaction 
of Group × Day [F(2, 18) = 61.407, p < 0.001, ηp

2 = 0.872]. 
A Group effect was found too [F(1, 9) = 23.982, p < 0.002, 
ηp

2 = 0.727]. Levene’s test showed homogeneity of vari-
ances for all within-subject variables. Post-hoc Bonfer-
roni tests indicated that Group interaction is due to the 
Familiar group drank a lower amount of the novel vin-
egar solution on Day1 than both the water (Baseline) 
(p < 0.001) and the familiar vinegar solution on Day2 
(p < 0.03). No differences were found in the Control group 
(p > 0.05).

Regarding the CCO results, Fig.  3 show the mean 
(± SEM) CCO units in each region of interest of the 
three groups (Control, Novel and Familiar). A mixed 

3 (Group) × 3 (ROI) ANOVA analysis was carried out. 
Levene’s tests showed homogeneity of variances for 
all within-subject variables. The analysis revealed a 
significant effect of ROI, [F(2,36) = 38.858, p < 0.001, 
ηp

2 = 0.179]. Neither the interaction Group × ROI 
[F(4, 36) = 1.964, p > 0.05, ηp

2 = 0.683] nor the main 
factor Group  [F(2, 18) = 3.235, p > 0.05, ηp

2  = 0.264] 
were significant. Post-hoc Bonferroni tests showed 
higher metabolic activity in BLA than Pir (p < 0.001) 
and Cpu (p < 0.01), being Pir activity higher than Cpu 
(p < 0.005). Although the interaction was not signifi-
cant, one-way ANOVA analyses were applied to each 
ROI because testing our hypotheses required gain-
ing knowledge about the difference between groups 
in BLA. They indicated significant differences only in 
BLA [F(2,18) = 5.365, p < 0.05, ηp

2 = 0.373], but not 

Fig. 2 Mean (± SEM) consumption of each group during the water baseline, the first and the second exposure to water (Control) or cider vinegar 
solution (Familiar). * = p < 0.05

Fig. 3 Mean (± SEM) brain metabolic activity of each region of interest (BLA, Pir, Cpu) when exposed to water (Control) or to a cider vinegar 
solution either once (Novel) or twice (Familiar). * = p < 0.05
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in Pir [F(2,18) = 1.374, p > 0.05, ηp
2 = 0.132] or Cpu 

[F(2,18) = 0.148, p > 0.05, ηp
2 = 0.016]. Post-hoc Bon-

ferroni tests showed that the Familiar group exhibited 
higher metabolic BLA activity than both Novel group 
drinking vinegar for the first time (p < 0.05) and Control 
group drinking water (p < 0.05). There were no differ-
ences between Novel and Control groups (p > 0.05).

Discussion
The behavioral results are consistent with those previ-
ously reported [3]. Flavor neophobia and AN are evi-
denced by reduced intake of the novel vinegar solution 
which significantly increases on the second exposure as 
the flavor becomes familiar. The results indicate higher 
BLA metabolic activity in the group exposed twice to the 
vinegar solution than that exposed once. This supports a 
selective involvement of the area in the processes leading 
to the formation of the safe taste memory but not novelty 
detection. Our results do not allow us to draw conclu-
sions regarding the specific process associated with BLA 
activity. A potential role of BLA in the retrieval of the fla-
vor memory formed during the first exposure is conceiv-
able. Both retrieval and stabilization of the safe memory 
should be taking place in the second flavor exposure. 
Hence, it is feasible an association between the reported 
increase in BLA activity and memory retrieval. In fact, 
memory formation should have been initiated during the 
first exposure but BLA activity changes were not found 
at this stage. Also, the increased BLA activity during 
the second vinegar exposure could be associated with a 
selective stabilization process.

Moreover, since no significant effects were found in Pir, 
this undercuts the hypothesis that the increased energy 
expenditure in BLA could be due to enhanced olfactory 
processing during the second exposure. This is consist-
ent with our previous findings using c-Fos immunohis-
tochemistry [20]. We did not find significant differences 
between the activity induced by one and two vinegar 
exposures in neither the anterior nor the posterior piri-
form cortex regions evaluated. In fact, we have previ-
ously reported increased activity induced by drinking a 
well familiarized vinegar solution after six exposures, but 
not after two, only in the rostral part of the posterior Pir 
[20]. This region corresponds to the level assessed in the 
present study. Thus, the absence of differences after two 
exposures confirms no role of Pir during the familiariza-
tion process. Furthermore, the fact that no effect of flavor 
exposures was found in Cpu corroborates a selective BLA 
involvement in flavor familiarization.

These findings suggest that neophobia and AN might 
be independent processes that rely on dissociable brain 
areas. Accordingly, there was a selective increase of BLA 
activity in those animals drinking the familiar vinegar 

solution in comparison with those drinking water while 
there were no changes in those drinking the novel vine-
gar solution. We have previously reported similar results 
in the nucleus accumbens shell [7] and the medial pre-
frontal cortex [8]. Although our results do not allow us to 
draw a circuit approach, it is conceivable that BLA would 
form a functional network with these areas. Hence, we 
cannot discard that the reported BLA activity changes 
during AN could be driven by top-down control from 
areas such as the prefrontal cortex. Previous reports indi-
cated higher BLA activity during drinking a novel sac-
charin solution [6] but no effect of BLA lesions on odor 
neophobia using a 0.1% amyl acetate solution [4]. The 
present findings would suggest the involvement of BLA 
in flavor familiarization but not novelty detection. Thus, 
those flavors composed of an odorous component would 
involve BLA activity during the formation of the flavor 
safe memory.

Our results confirm the value of the CCO technique to 
explore changes associated with learning and memory. 
Hence, flavor recognition memory is added to taste and 
spatial learning in which CCO has proven to be a useful 
technique for identifying the brain areas involved. In fact, 
previous reports indicated increased CCO activity in 
BLA during the first day of training in a spatial learning 
task [21].

Taken together, our results would support a relevant 
role of the amygdala either in retrieval and/or the stabili-
zation process leading to a safe flavor memory.

Conclusions
The main finding of the study is that BLA metabolic 
activity was higher in the group exposed to a familiar vin-
egar solution than in the groups exposed to either water 
or a novel vinegar solution. These results are consistent 
with results of lesion studies and support the basolateral 
amygdala involvement in those processes leading to the 
attenuation of flavor neophobia.
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