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Abstract
Background  Mood disorders, particularly depression and anxiety, are associated with zinc dyshomeostasis and 
aberrant GABAergic signaling. Activation of ZnR/GPR39 by synaptic zinc in the hippocampus triggers phosphorylation 
of extracellular regulated kinase (ERK1/2), which regulates the K+/Cl− cotransporter (KCC2) and thereby GABAergic 
inhibitory neurotransmission and seizure activity. Therefore, we studied whether impaired ZnR/GPR39 signaling is 
linked to anxiety-related behavior in male or female mice.

Results  Using the acoustic startle response, elevated plus maze, and open field test, we found increased anxiety-
related behavior in ZnR/GPR39 knockout (KO) mice. Despite a well-established sex difference, where females are 
typically more prone to anxiety, both male and female ZnR/GPR39 KO mice exhibited increased anxiety-related 
behavior compared to wildtype (WT) mice. Additionally, ZnR/GPR39 KO mice displayed impaired motor coordination 
in the pole and rotarod tests but did not show reduced muscle strength, as indicated by a grip test. Finally, we found 
intrinsic alterations in the expression level of KCC2, a major Cl− transporter regulating GABAergic signaling, in the 
amygdala of naïve ZnR/GPR39 KO mice compared to controls.

Conclusions  Our findings indicate that loss of ZnR/GPR39 enhances anxiety-related behavior in both male and 
female mice. Moreover, ZnR/GPR39 KO mice exhibit impaired motor coordination, which may be associated with 
increased anxiety. Finally, we demonstrate that loss of ZnR/GPR39 modulates the expression of KCC2 in the amygdala. 
Thus, we propose that ZnR/GPR39 can serve as a target for regulating GABAergic signaling in anxiety treatment.
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Background
Zinc is selectively sequestered into synaptic vesicles of 
the neocortex, amygdala and hippocampus during early 
postnatal development by the zinc transporter, ZnT3 [1, 
2]. This pool of Zn2+ ions is released during neuronal 
activity to modulate the function of several postsynaptic 
targets, affecting cognitive function [3–5]. In the amyg-
dala, synaptic Zn2+ induces long-term potentiation in 
pyramidal neurons and is associated with fear condition-
ing [6–8]. In addition, restriction of dietary zinc facili-
tated fear extinction, and this was related to increased 
expression of the immediate-early genes c-Fos and Zif268 
in cortico-amygdala regions [9].

A distinct target for Zn2+ is a Gq-coupled zinc sens-
ing receptor ZnR/GPR39, which is activated by the syn-
aptically released Zn2+ [10, 11]. This previously orphan 
receptor was initially suggested to act as a receptor for 
obestatin [12]; however, these results were not repro-
duced [13], and Zn2+ was shown to act as the ligand 
for this receptor [14–16]. The ZnR/GPR39 mRNA was 
largely localized to the hippocampus and amygdala, and 
was also found in the auditory cortex [17], but not in the 
hypothalamus where obestatin was expected to play a 
role. Thus far, Zn2+ remains the only known physiological 
ligand [10, 18].

Activation of synaptic release from Zn2+-containing 
fibers triggers ZnR/GPR39-dependent Ca2+ rise and 
ERK1/2 activation. However, a post-synaptic response 
is absent in ZnR/GPR39 knockout (KO) mice [19, 20], 
further suggesting that Zn2+ is the distinct ligand of this 
receptor. Activation of ZnR/GPR39 signaling enhances 
transport rates of the K+/Cl− cotransporter, KCC2 [11, 
19]. Neuronal KCC2 is the major Cl− extruder that con-
trols transmembrane Cl− gradients, thus regulating 
GABAA-dependent Cl− influx and the inhibitory drive 
[21, 22]. Increase in the expression of this transporter 
plays a major role in the developmental shift that drives 
GABA from excitatory to inhibitory neurotransmission 
during early development [23, 24]. As such, activation 
of ZnR/GPR39 signaling that upregulates KCC2 activ-
ity in the hippocampus enhances inhibitory tone and 
protects from kainate-induced epileptic seizures [25]. 
Dramatically lower severity scores and shorter duration 
of seizures were monitored in wildtype (WT) compared 
to ZnR/GPR39 KO mice [19, 26]. Moreover, changes 
in ZnR/GPR39 expression were associated with mor-
bid developmental seizures, an effect that was rescued 
by dietary zinc supplementation [27]. Recent studies 
using the GABA channel blocker, pentylenetetrazole, 
to induce seizures showed that a putative ZnR/GPR39 
agonist enhances epileptogenesis [28, 29]. However, the 
canonical pathway of ZnR/GPR39-activation of KCC2, 
which is mediated by the GABA currents, is blocked by 
pentylenetetrazole and cannot underlie the effects of the 

putative agonist. Additionally, ZnR/GPR39 modulates 
cannabinoid signaling in the dorsal cochlear nucleus 
region in the auditory brainstem [20]. Thus, ZnR/GPR39 
regulates GABAergic inhibitory signaling, by modulating 
the neuronal Cl− gradients maintained by KCC2.

In humans, epilepsy is associated with mood disor-
ders, specifically anxiety, via a mechanism that is not fully 
understood [30, 31]. It is well-established, that excitatory/
inhibitory imbalance is implicated in mood disorders, 
including anxiety and depression, and specifically regu-
lation of the GABAergic pathway is crucial in emotional 
dysfunction [32, 33]. The inhibitory pathway in the hip-
pocampus and amygdala plays a major role in the etiology 
of anxiety [34]. Consistent with these findings, a mutant 
mouse that expresses approximately 30% of normal 
KCC2, a major regulator of GABAergic signaling, shows 
increased susceptibility to seizures and anxiety-related 
behavior [35]. Dietary zinc deficiency was suggested to 
reduce KCC2 expression in the prefrontal cortex but not 
hippocampus of male mice [36]. The general role of ZnR/
GPR39 regulation of GABAergic responses suggests that 
this receptor may be involved in anxiety-related behav-
ior. Yet, whether ZnR/GPR39 regulation of KCC2 is the 
mechanism linking zinc to mood disorders remains not 
well understood.

Zinc deficiency is considered a risk factor in mood 
disorders, and is associated with anxiety and depres-
sion [37, 38]. In concordance with this, rats fed a zinc-
deficient diet exhibit increased anxiety-related behavior 
[39]. Importantly, anxiety is associated with synaptic 
Zn2+ deficiency, as ZnT3 KO mice, lacking synaptic 
Zn2+, exhibit slower travel speed in the open field test 
and a lower score in a social preference test [40]. The 
synaptic Zn2+ activates ZnR/GPR39, and this receptor 
was suggested to play a role in depression- and anxiety-
like behavior in mice [41]. Indeed, ZnR/GPR39 KO mice 
showed increased immobility time in forced swim and 
tail suspension tests, and fewer entries into a lit compart-
ment in light/dark box test [42–44], which were corre-
lated with higher c-fos activation in the medial amygdala 
[45]. While several Zn2+ transporters have been associ-
ated with diseases [46], the signaling pathways linking 
ZnR/GPR39 to mood disorders are not well understood.

Previous behavioral studies of ZnR/GPR39 KO ani-
mals did not perform sex-dependent analysis, although 
the prevalence of anxiety disorders is higher in females 
compared to males [47, 48] and female animals present 
an important and reproducible model [49, 50]. Moreover, 
mice deficient in synaptic Zn2+ (ZnT3 KO) show sex-
dependent behavioral deficits, with female mice exhibit-
ing impaired skilled learning and a motor deficit in the 
pole test, while male mice show autistic-like behavior [40, 
51, 52]. Therefore, we asked if ZnR/GPR39 has a direct 
role in anxiety-related behavior, specifically in male or 
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female ZnR/GPR39 KO mice. We found that loss of 
ZnR/GPR39 enhances anxiety-related behavior and is 
linked to motor coordination deficits, but not strength, in 
both male and female mice. Interestingly, we monitored 
changes in the expression of the Cl− transporters that 
regulate GABAergic signaling in the amygdala and hip-
pocampus of ZnR/GPR39 KO mice. Thus, we suggest a 
role for ZnR/GPR39 in modulating inhibitory signaling 
that underlies anxiety-related behavior.

Materials and methods
Animals
Transgenic mice lacking the gene that encodes for ZnR/
GPR39 [53] were used in this study and compared to 
littermate WT mice as controls (30 ± 4  g males, 23 ± 2  g 
females, no significant weight difference between geno-
types, F (1,82) = 1.32, p = .25). Genotypes were verified by 
polymerase chain reaction (PCR), using DNA fragments 
that were isolated from tail biopsy samples. Specific 
primers for WT (ZnR/GPR39+/+) allele (forward: 5’​A​A​C​A​
G​C​G​T​C​A​C​C​A​T​C​A​G​G​G​T​T, reverse: 5’​T​G​C​G​A​G​A​G​A​G​
G​T​T​G​C​A​G​T​T​G​A) and KO allele (forward: 5’​G​G​A​A​C​T​
C​T​C​A​C​T​C​G​A​C​C​T​G​G​G; reverse: 5’​G​C​A​G​C​G​C​A​T​C​G​C​
C​T​T​C​T​A​T​C) were used to amplify an exclusive sequence 
for each genotype. Mice were housed in individually ven-
tilated cages (97sqcm floorX13cm height) with woodchip 
bedding and environmental enrichment using cardboard 
tubes and shredded paper for hiding and nesting. Mice 
had unrestricted access to food and tap water. The cages 
were kept in a temperature-controlled room (22◦C) 
under a 12:12  h light/dark cycle (lights on during the 
day). Adult WT (GPR39+/+) and KO (GPR39−/−) C57BL6 
mice of both sexes were tested and housed in groups of 
2–5 mice of the same sex and genotype per cage. Mice 
were 3–5 months old at the time of the testing (4 ± 0.7 
months). All mice were inspected before any behavioral 
tests were conducted and any that displayed injuries or 
health problems were removed. Naïve mice were used for 
the experimental paradigms, to make sure that previous 
experiments did not affect stress levels and thereby affect 
the anxiety results. All tests were performed at ambient 
temperature and low background noise. Note that behav-
ioral measures may be affected by the strain, however we 
compared WT and ZnR/GPR39 KO mice of the same 
strain, which is considered highly active [54]. The sample 
size for each experiment is reported in each respective 
figure. All experimental procedures and animal handling 
were performed in accordance with a protocol approved 
by the Committee for the Ethical Care and Use of Ani-
mals in Experiments at the Faculty of Health Sciences at 
Ben-Gurion University (AAALAC approved facility).

Behavioral testing: acoustic startle response (ASR) and 
prepulse inhibition (PPI)
ASR experiments were used to determine anxiety-related 
behavior. In this paradigm, mice were presented with 30 
startle trials in which a loud sound (110 dB SPL white 
noise, 40 ms in duration) was presented, with random 
time intervals (5 to 25  s) between the pulses. The first 
two pulses were not used for the analysis. In the PPI 
experiment, a modified ASR protocol was used to study 
sensorimotor gating. We presented prepulse stimuli 
(80 dB SPL, 40 ms duration), which were completed 90 
ms before the onset of the startle pulse. In addition, 20 
startle-only trials were performed and the prepulse tri-
als were randomly ordered between them, separated by 
a quiet inter-trial interval ranging randomly from 8 to 
24 s. The ASR averaged within each prepulse frequency 
condition was then normalized to the average ASR in the 
startle-only trials. Since previous studies suggested that 
loss of synaptic Zn2+ affects frequency discrimination 
[55], we asked if a similar effect on frequency discrimina-
tion is also found in ZnR/GPR39 KO mice. We therefore 
used different frequencies (7.2, 8, or 9 kHz; seven times 
each) for the prepulse stimulus and tested if the PPI var-
ies at different frequencies. Experiments were performed 
using the LE0823G Startle and Fear Combined system 
(Panlab, Harvard Apparatus), and test protocols were 
programmed with Packwin V2.0.06 software. The sys-
tem contained two sound-attenuated startle chambers, 
and animals were tested in pairs, with chambers coun-
terbalanced across the different experimental groups. 
On the load cell platform, mice were placed in a holder 
(LE117M) small enough to restrict movement but big 
enough to enable turning around. Voltage waveforms 
that were converted from the movements of the mice 
were digitized and stored on a computer. The Panlab 
calibration unit was used routinely to ensure consistent 
stabilimeter sensitivity between test chambers and over 
time. Sound levels within each test chamber were mea-
sured routinely with the software calibration tests and by 
a sound level meter (TFA-Dostmann SOUND BEE) to 
ensure consistent sound presentation. All experiments 
were performed during the light cycle. Each session 
started with five minutes of acclimation without back-
ground noise.

Behavioral testing: elevated plus maze (EPM) and open 
field test (OFT)
The EPM test was used to evaluate the anxiety-related 
behavior of the mice. Experiments were done between 
5pm-8pm, just before the dark cycle, in a dimly lit room 
150–170  lx across the maze. The EPM apparatus con-
sisted of two opposing transparent closed arms (47  cm 
length × 5 cm width × 20 cm height) and two opposing 
open arms (47 cm length × 5 cm width, with a 3 cm ledge 
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to prevent falling) in the form of a plus, elevated 75 cm 
above the floor in a room illuminated by dim light. The 
mice were placed in the center of the maze facing an open 
arm, and behavior was recorded for 5 min on the maze. 
The maze was cleaned with a dilute solution of ethanol 
(70%) in water after each mouse. The digital recordings 
were analyzed with EthoVision 3.1 software [56] to mea-
sure entries and duration of time in the open and closed 
arms and the center region. During 300 s, we monitored 
the duration in open arms, the time spent in the cen-
ter zone between the arms of the maze, the number of 
entries into open arms, total arm entries (the number 
of entries into open and closed arms, as a relative pure 
index of locomotor activity) and total distance traveled. 
All measures referred to the body center point of the 
mice. To create a single dependent variable, the Anxiety 
Index (AI) for each EPM exposure was calculated as fol-
lows [57, 58]:

	
AI = 1−





(
Duration in open arms

Duration in open and closed arms

)
+

(
Open arm entries
Total arm entries

)

2





The open field apparatus consisted of a square area 
(1 × 1  m) divided into 4 compartments (50 × 50 × 50  cm) 
with dark walls. Four mice of the same genotype and 
sex were tested simultaneously, with one mouse in each 
compartment. and their behavior was recorded [59]. 
Experiments were done just after the light cycle begins 
at 9am-12pm, in a dimly lit room 140–150 lx across the 
apparatus. Initially, the mouse was placed in a periph-
eral corner, facing the wall. It was allowed to move freely 
around the arena and explore the environment for a 
single session of 10  min. The digital recordings were 
analyzed using EthoVision 3.1 software [56]. Each com-
partment was divided into central (~ 20% of total area) 
and peripheral parts [60]. The frequency and duration of 
entries of the mouse (body center point) to the central 
part of the arena were assessed. In addition, we moni-
tored the total time of no movement (freezing time), total 
rotations (clockwise and counterclockwise), and the total 
distance traveled on the apparatus. The apparatus was 
cleaned with 70% ethanol solution after every trial to 
eliminate any olfactory clues.

Behavioral testing for strength and coordination: Pole test, 
rotarod and grip test
These tests that do not directly assess anxiety were per-
formed during the light hours, 2pm-6pm, in a lit room. 
The pole test was performed to assess motor dysfunc-
tion and coordination. Mice were placed with their head 
upward on the top of a 50 cm vertical pole with a diam-
eter of 1  cm that was wrapped with porous cotton fab-
ric tape to avoid slippage of the mice. The time to turn 

and the total time to descend to the base of the pole were 
recorded, starting from when the animal began the turn-
ing movement. This was conducted three times for each 
animal on separate days; the first trial was a training trial, 
and the times to descend in the second and third tri-
als were averaged. The time to descend was normalized 
compared to the WT male mice on that same day and the 
time for each animal is presented in the graph. The pole 
was cleaned with 70% ethanol solution after each animal 
completed the test.

The Rotarod experiments, to further test motor coor-
dination, were performed on the accelerating Ugo 
Basile Model 7650 Rota-rod apparatus (Ugo Basile, 
Camerio, Italy). A mouse was placed on the cylinder, 
which increased rotation speed from 5 to 40 rpm over a 
300  s period. Mice were first given one trial to become 
acquainted with the Rotarod apparatus before the test. 
The results presented are the latency to fall averaged over 
2 consecutive trials with a 30  min rest period between 
them, similar to the expected time previously measured 
for this strain and age [61, 62]. For detection, a group of 
5 mice was placed in individual compartments on the 
rotating rod before starting the acceleration program. 
The time each mouse remained on the rod was registered 
automatically. If the mouse remained on the rod for 300 s 
(top speed of the rod) the test was completed and scored 
as 300 s.

Grip strength experiments were performed to directly 
assess the strength of the ZnR/GPR39 KO mice compared 
to controls. In this test, mice forelimb grip strength and 
four-paws grip strength were monitored using a mouse-
specific strength gauge (Chatillon® DFE II Series device, 
Ametek). The average grip force (recorded in gram-force 
[gF]) of three trials was used for statistical analysis. In 
addition, we performed an inverted screen test as pre-
viously described [63]. Briefly, untrained animals were 
placed in the middle and on top of a 43 × 43  cm, 1  mm 
thick wire mesh with 12 × 12 mm squares. The mesh was 
rotated by 180° with the head of the animal descending 
first so that the animal was inverted, above soft bedding, 
while holding the mesh with all four limbs. The time 
before the animal fell was monitored and animals were 
allowed to stay up to 12 min. The test was repeated three 
times and the average latency to fall for each animal was 
used for statistical analysis.

Western blot analyses of protein levels in the amygdala 
and hippocampus
Mice were euthanized according to approved protocol 
and the amygdala was dissected from brains harvested 
from naïve WT and GPR39 KO animals aged 12–15 
weeks. Following the isoflurane euthanasia and decapita-
tion, brains were rapidly removed and placed in ice-cold 
phosphate buffer saline. The cerebellum and ventral third 
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of the cerebrum were removed and brains were mounted 
on the vibratome holder, submerged in ice-cold PBS 
(frontal side facing up and oriented towards the blade). 
Slices were discarded until the hippocampal formation 
was visible, after which, 4 consecutive, 300  μm slices 
were collected (corresponding to brain region between 
Sects. 66–78 in the Mouse Brain Atlas ​(​​​h​t​​t​p​s​​:​/​/​a​​t​l​​a​s​.​b​r​a​i​n​
-​m​a​p​.​o​r​g​/​a​t​l​a​s​​​​​)​) and transferred into a new dish contain-
ing fresh ice-cold PBS and dissected on ice. The amygdala 
was collected bilaterally from all 4 slices and combined 
into a lysis buffer containing vessel. The same sections 
were used to bilaterally dissect hippocampal tissue sam-
ples. The tissue was lysed in RIPA buffer (50 mM Tris-
HCl, pH 8.0; 150 mM NaCl; 1% IGEPAL CA-630; 0.5% 
sodium deoxycholate; ​0.1% SDS) freshly supplemented 
with protease and phosphatase inhibitor cocktails. The 
proteins were separated by sodium dodecylsulfate poly-
acrylamide gel electrophoresis and transferred to nitro-
cellulose membranes. Following blocking with 5% bovine 
serum albumin in tris-buffered saline (supplemented 
with 0.1% Tween20), membranes were incubated with 
primary antibodies overnight at 4  °C (KCC2, Cell Sig-
naling; 94725, 1:1000; NKCC1, Abcam, 303518, 1:1000; 
tERK1/2, Cell Signaling; 4696, 1:1000, and tCaMKII, 
Santa Cruz Biotechnology sc13141, 1:1000), and subse-
quently with appropriate horseradish peroxidase-conju-
gated secondary antibodies for 1 h at room temperature. 

β-actin or β-tubulin served as a loading control. The 
immunoblotting bands were quantified by densitometry 
using ImageJ software and normalized to the loading 
control. For KCC2 quantification, oligomer fraction was 
normalized to KCC2 monomer level.

Statistical analysis
To analyze the effects of genotype and sex on behav-
ioral measures, two-way analyses of variance (ANOVA) 
were performed. PPI was analyzed with a mixed design 
repeated measures ANOVA, with prepulse frequency as 
a within-subject independent variable. All Statistical tests 
were conducted using JASP (JASP Team 2022, ​h​t​t​p​s​:​/​/​j​a​s​
p​-​s​t​a​t​s​.​o​r​g​/​​​​​)​.​​

Results
Anxiety-like: acoustic startle response and elevated plus 
maze
We initially asked if ZnR/GPR39 KO female and male 
mice exhibit similar anxiety-related behavior by measur-
ing the well-established acoustic startle response (ASR). 
The mean startle amplitude was significantly higher in 
both male and female ZnR/GPR39 KO mice compared 
to WT mice (F (1,21) = 25.5, p < .001), without significant 
interaction between genotype and sex (Fig. 1a). In addi-
tion, we found that startle habituation (the proportion of 
the mean ASR amplitude in the last 5 trials compared to 

Fig. 1  Acoustic Startle Response (ASR) and Prepulse Inhibition (PPI). (A) ASR amplitudes. Box central marks indicate the median, bottom and top edges 
indicate the 25th and 75th percentiles, n = 6–7 / group. (B) PPI across different prepulse frequencies. Error bars represent the means ± 1 standard error, 
n = 8 / group. Asterisks denote the effect of genotype, ***p < .001, ns non-significant, AU arbitrary units
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the first 5 trials in each animal) was not significantly dif-
ferent between WT and KO mice (F (1,21) = 0.01, p = .92). 
To assess sensorimotor gating, we used the prepulse 
inhibition paradigm (PPI) paradigm. A modified version 
of this protocol was previously used to show that loss of 
synaptic Zn2+ affects frequency discrimination [55]. We 
therefore also used different frequencies for the prepulse 
stimuli (7.2, 8, or 9 kHz; seven times each) and studied if 
ZnR/GPR39 may be associated with frequency discrimi-
nation. If auditory acuity at these frequencies is impaired, 
then the degree of inhibition should be smaller following 
the prepulse. Notably, our results indicated that regard-
less of the prepulse frequency, the startle responses were 
attenuated to a similar extent (~ 40–50%) in both WT and 
KO mice of both sexes (Fig. 1b) (non-significant effects of 
genotype or interaction prepulse frequency*genotype; F 
(1,28) = 0.32, p = .58; F (2,56) = 0.46, p = .64; respectively). 
This indicates that sensorimotor gating and frequency 
discrimination are not modulated by ZnR/GPR39 signal-
ing and are not likely to explain differences in ASRs. Hav-
ing ruled out weight differences (see Methods, Sect. 2.1) 
and sensory differences, we tested whether the higher 
startle response in both male and female ZnR/GPR39 KO 
mice may be linked to higher anxiety levels.

As an additional test for anxiety-related behavior, we 
conducted the elevated plus maze (EPM) and moni-
tored the time spent in open arms or in the center of the 
apparatus, and the number of entries into the open arms 
(Fig. 2a-c). Both male and female ZnR/GPR39 KO mice 
spent less time in the open arms and entered them less 
frequently (F (1,39) = 7.5, p = .009; F (1,39) = 14.0, p < .001), 
providing further evidence of anxiety-related behavior in 
ZnR/GPR39 KO mice. Note that time spent in the cen-
ter of the apparatus was similar across groups (Fig. 2b), 
likely reflecting basic anxiolytic behavior of mice [54]. To 
account for potential differences in locomotor abilities, 
we analyzed the total number of arm entries (Fig.  2d) 
and the total distance traveled in the apparatus (Fig. 2f ). 
ZnR/GPR39 KO mice traveled a smaller total distance 
(F (1,39) = 8.8, p = .005), consistent with fewer total arm 
entries (F (1,39) = 4.8, p = .035). Despite the reduced loco-
motion, the proportional entry rate into the open arms 
was lower in ZnR/GPR39 KO mice, suggesting higher 
anxiety (Fig. 2c). To integrate all parameters, we calcu-
lated a general Anxiety Index [64] (Fig. 2e), which showed 
a significant effect of genotype (F (1,39) = 11.0, p = .002), 
without a significant interaction with sex (F (1,39) = 0.6, 
p = .44). The results presented in this set of experiments 
suggest that ZnR/GPR39 KO mice exhibit anxiety-related 
behavior compared to WT mice, and that this effect is 
consistent across both sexes.

Locomotion: open field test
Because ZnR/GPR39 KO mice exhibited hypo-locomo-
tion patterns in the EPM, we examined the differences 
in motor activity and strength between the genotypes. 
We first used the open field test (OFT), which assesses 
both anxiety and mobility. To determine if increased 
anxiety-related behavior can be monitored, we analyzed 
the frequency of entries to the central zone (Fig.  3a). 
ZnR/GPR39 KO animals showed a significantly lower 
frequency of entries to the center zone compared to 
WTs, supporting increased anxiety-related behavior of 
the ZnR/GPR39 KO mice of both sexes (F (1,21) = 5.3, 
p = .031). Nevertheless, the time spent in the center 
zone of the arena (Fig.  3b) was not significantly differ-
ent between WT and ZnR/GPR39 KO mice, which could 
be possibly related to anxiety due to a non-significant 
increase in the freezing time (Fig. 3c) of ZnR/GPR39 KO 
compared to WT mice (F (1,21) = 3.9, p = .06). Regarding 
mobility effects, the number of rotations was not different 
between the genotypes (Fig. 3d, F (1,21) = 1.2, p = .28), and 
similar total distance traveled in the apparatus was moni-
tored for both genotypes (Fig.  3e, F (1,21) = 2.1, p = .16). 
Altogether, this test also indicates that ZnR/GPR39 KO 
mice present increased anxiety-related behavior.

Coordination and strength: Pole, rotarod and grip tests
To assess whether motor coordination or strength could 
influence locomotion in the EPM or ASRs, we conducted 
two complex motor tests that involve both strength and 
coordination requirements. In the pole test (Fig.  4a-b), 
ZnR/GPR39 KO mice were significantly slower to turn (F 
(1,41) = 5.5, p = .024) and descend the pole (F (1,41) = 5.9, 
p = .02) compared to WT mice. Similarly, in the accel-
erating rotarod test (Fig.  4c), ZnR/GPR39 KO mice 
stayed on the rod for a significantly shorter time than 
WT mice, corresponding to much slower rates of turn-
ing (F (1,51) = 23.1, p < .001). In both tests, there were no 
significant effects of sex or interaction between geno-
type and sex (Pole: F (1,41) = 0.05, p = .83; F (1,41) = 0.2, 
p = .64; Rotarod: F (1,51) = 0.02, p = .92; F (1,51) = 0.009, 
p = .92). This suggests that motor coordination abilities 
or strength of ZnR/GPR39 KO mice may be impaired in 
both males and females.

To assess potential differences in strength between gen-
otypes that could affect the performance in the pole and 
rotarod tests, we directly measured the muscle strength 
of ZnR/GPR39 KO mice using the grip test. Both female 
and male ZnR/GPR39 KO mice exhibited significantly 
greater strength of their forelimbs (Fig.  5a) or all four 
limbs (Fig.  5b) compared to WT mice (F (1,37) = 6.1, 
p = .018; F (1,37) = 10.8, p = .002; respectively). How-
ever, in the horizontal grid test, ZnR/GPR39 KO mice 
showed similar latencies to fall off the grid as WT mice 
(F (1,37) = 0.03, p = .86) (Fig.  5c). There was a significant 
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Fig. 2  Elevated Plus Maze (EPM). (A) Time spent in the open arms (B) Time spent in the center (C) Number of entries into the open arms relative to total 
number of entries into the open and closed arms (D) Total number of entries into open and closed arms (E) Anxiety index (see Methods) (F) Total distance 
traveled. Box central marks indicate the median, bottom and top edges indicate the 25th and 75th percentiles, n = 10–12 / group, asterisks denote the 
effect of genotype *p < .05, **p < .01, ***p < .001, ns non-significant
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Fig. 3  Open Field Test (OFT). (A) Total number of entries into the center (B) Time spent in the center (C) Total time of freezing (D) Number of rotations 
(E) Total distance traveled. Box central marks indicate the median, bottom and top edges indicate the 25th and 75th percentiles, n = 6 / group, effect of 
genotype *p < .05, ns non-significant
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effect of sex in the horizontal grid, indicating that males 
exhibited increased strength (F (1,37) = 12.8, p < .001). 
However, there were no significant interaction effects 
between sex and genotype in these measures (Grip: 
F (1,37) < 0.001, p = .97; F (1,37) = 0.1, p = .71; Grid: F 
(1,37) = 0.2, p = .62). Overall, this suggests that both male 
and female ZnR/GPR39 KO mice do not exhibit muscle 
weakness compared to WT mice.

Signaling pathway underlying ZnR/GPR39 regulation of 
anxiety
Previous studies linked anxiety-related behavior to the 
GABAergic pathway, and specifically to changes in the 
K+/Cl− cotransporter, KCC2 [35, 65] that is regulated by 
the ZnR/GPR39 [19, 66]. To further explore the intrin-
sic mechanism that underlies the increased anxiety-
related behavior observed in ZnR/GPR39 KO mice, we 
measured levels of KCC2 in the amygdala and hippo-
campus of naïve mice. We compared the level of KCC2 
oligomers, the functional form of this transporter [67], 
normalized to KCC2 monomer levels, between WT and 

Fig. 4  Motor Coordination Tests. (A) Time taken to turn and (B) Total time to descend the vertical Pole Test, n = 9–12 / group (C) Latency to fall off the 
Rotarod. Box central marks indicate the median, bottom and top edges indicate the 25th and 75th percentiles, n = 12–17 / group, asterisks denote the 
effect of genotype *p < .05, ***p < .001
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ZnR/GPR39 KO mice (Fig. 6a-b). We found an increase 
in KCC2 expression in the amygdala of ZnR/GPR39 KO 
mice (F (1,19) = 7.3, p = .014) but not in the hippocampus. 
We further asked if the Na+-dependent K+/Cl− cotrans-
porter NKCC1 that is driving Cl− influx, opposing KCC2, 
is affected by loss of ZnR/GPR39 (Fig.  6c-d). We found 
that NKCC1 levels in WT and ZnR/GPR39 KO mice are 
similar in the amygdala and hippocampus of ZnR/GPR39 
KO mice compared to WT (F (1,7) = 6.3, p = .037). Acti-
vation of ZnR/GPR39 in the hippocampus also enhances 
calcium calmodulin kinase (CaMKII) phosphorylation 
[11]. The phosphorylation of these pathways is triggered 

by synaptic transmission, since we are measuring dif-
ferences in baseline conditions, we measured tCaMKII 
level in the amygdala and hippocampus of WT and ZnR/
GPR39 KO tissue (Fig. 6e-f ). We found that under base-
line conditions, tCaMKII is not different in ZnR/GPR39 
KO mice compared to WT. Although there were no sig-
nificant effects of genotype, we did see significant effects 
of sex and significant interaction between genotype and 
sex in both the amygdala (F (1,8) = 11.1, p = .003) and 
the hippocampus (F (1,8) = 9.3, p = .016). Simple effects 
analyses indicated that ZnR/GPR39 KO females showed 
higher tCaMKII protein levels in the amygdala (p = .005), 

Fig. 5  Strength Tests. (A-B) Muscle strength mean values measured for each mouse using its forelimbs (A) or all four limbs (B). (C) Latency to fall off the 
inverted wire screen. Box central marks indicate the median, bottom and top edges indicate the 25th and 75th percentiles, n = 8–12 / group. Asterisks 
denote the effect of genotype *p < .05, **p < .01, ns non-significant, gF gram-force
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and lower protein levels in the hippocampus (p = .039). 
Finally, we asked if extracellular regulated kinase 
(ERK1/2) that mediates ZnR/GPR39 activation of KCC2 
is altered in the ZnR/GPR39 KO mice (Fig. 6g-h). We did 
not see a significant effect of genotype or sex in total lev-
els of ERK1/2 in the amygdala or hippocampus, likely due 
to the fact that their activity depends on phosphorylation 
that is very short [68].

Discussion
Our current analysis aimed to study the behavioral 
aspects of ZnR/GPR39 using both male and female mice, 
based on established sex-dependent effects on anxiety 
disorders. While anxiety is typically more prominent 
in females [47, 48], we observed that increased anxiety-
related behavior in ZnR/GPR39 KO mice does not show 
sex-dependent effects. Previous studies observed an 
anxiety-like phenotype in another strain of GPR39 KO 
male mice [42]. While that study did not directly inves-
tigate the relationship between anxiety and ZnR/GPR39 

regulation of GABAergic signaling, we find an impor-
tant link via changes in KCC2 expression that suggests 
that modulation of the GABAergic pathway in ZnR/
GPR39 KO mice may underlie the anxiety-like pheno-
type. In addition, hippocampal-dependent memory defi-
cits were observed in these male ZnR/GPR39 KO mice, 
which were not found in female mice [69]. Importantly, 
while our study uses a mouse model, ZnR/GPR39 mRNA 
expression in the human brain is similar to that observed 
in the mouse brain, and found in the hippocampus and 
amygdala, both regions closely associated with anxiety ​(​​​
h​t​​t​p​s​​:​/​/​w​​w​w​​.​p​r​​o​t​e​​i​n​a​t​​l​a​​s​.​o​r​g​/​E​N​S​G​0​0​0​0​0​1​8​3​8​4​0​-​G​P​R​3​9​
/​b​r​a​i​n​/​a​m​y​g​d​a​l​a​​​​​)​.​​

Zinc deficiency itself is strongly linked to mood dis-
orders and specifically anxiety [70]. Animal studies have 
shown that a 2 week exposure to a diet that is low in 
zinc, reduced neuronal zinc levels and led to anxiety-like 
behavior [39]. This link is also relevant in human patients, 
as a systematic review suggested that lower serum zinc 
levels are found in anxiety patients and zinc intake can 

Fig. 6  Protein expression levels in the amygdala and hippocampus. (A-B) Level of K+/Cl- cotransporter (KCC2) oligomers normalized to KCC2 monomer 
(C-D) Level of Na+-dependent K+/Cl- cotransporter (NKCC1) (E-F) Level of total calcium calmodulin kinase (tCaMKII) (G-H) Level of total extracellular 
regulated kinase (tERK). Box central marks indicate the median, bottom and top edges indicate the 25th and 75th percentiles, n = 3–6 / group, asterisks 
denote the effect of genotype, *p < .05

 

https://www.proteinatlas.org/ENSG00000183840-GPR39/brain/amygdala
https://www.proteinatlas.org/ENSG00000183840-GPR39/brain/amygdala
https://www.proteinatlas.org/ENSG00000183840-GPR39/brain/amygdala
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reduce symptoms of anxiety [71]. A mechanism that links 
zinc to anxiety was not clearly shown, but zinc regulation 
of GABA signaling and its effects on excitatory/inhibi-
tory balance is suggested to be involved in this function 
of zinc. The GABAergic system plays an important role in 
anxiety-like behavior [72, 73]. Moreover, parental stress 
affects GABAergic system development, and leads to 
anxiety-like behavior in offspring [65]. Thus, ZnR/GPR39 
that modulates GABAergic activity, is well-positioned to 
control anxiety levels. The role of the receptor, and the 
effects seen on KCC2 expression in our study, provide a 
distinct handle to explain the link between zinc, GABA 
responses and anxiety.

Loss of ZnR/GPR39 results in a lack of activation of the 
major Cl− cotransporter, KCC2, in the hippocampus [19]. 
Interestingly, a decrease in KCC2 expression and func-
tion was associated with anxiety-related behavior [65], 
with a dramatic effect on open arm entry in the EPM test 
[35]. Moreover, KCC2 regulation of Cl− gradients directly 
affects GABAA receptors activity and the inhibitory 
tone, which are associated with anxiety disorders [72]. 
Impaired regulation of KCC2 activity, by its phosphoryla-
tion, has also been linked to abnormal vocalization and 
deficits in social behavior [74]. Here, we found elevated 
expression of the oligomeric, functional KCC2 [22, 75], in 
the amygdala of both male and female ZnR/GPR39 KO 
mice. In contrast, hippocampal KCC2 expression was 
not different between WT and ZnR/GPR39 KO mice, 
in agreement with previous studies [69]. Surprisingly, 
the increased anxiety-related behavior in ZnR/GPR39 
KO mice was associated with increased expression of 
KCC2 in the amygdala, while previous studies associ-
ated anxiety with its decrease. This suggests a potential 
compensatory mechanism, of increased KCC2 expres-
sion in the amygdala that nevertheless is not sufficient to 
confer protection against anxiety in the ZnR/GPR39 KO 
mice. Moreover, our examination of adult mice revealed 
that the expression of NKCC1, which typically decreases 
during development concomitantly with KCC2 increase, 
was not affected by the loss of Zn/GPR39. Aberrant 
GABA inhibitory signaling in the hippocampus, baso-
lateral amygdala, and interconnected amygdaloid nuclei, 
including the central and lateral nuclei, plays a critical 
role in anxiety disorders [34, 76, 77]. The role of KCC2 
and NKCC1 in modulating GABA inhibitory signaling 
suggests that the general elevated expression of KCC2 
in the amygdaloid complex of ZnR/GPR39 KO mice may 
link between inhibitory signaling in the amygdaloid com-
plex circuitry and ZnR/GPR39. However, specific roles of 
individual amygdala subregions in ZnR/GPR39-depen-
dent GABAergic signaling and anxiety behavior require 
further investigation in future studies. Nevertheless, the 
identification of ZnR/GPR39 as an upstream target for 
the effects of GABAA and KCC2 on anxiety may suggest a 

more subtle handle for the regulation of this pathway and 
thereby of anxiety.

In the amygdala, CaMKII phosphorylation has been 
shown to increase in corticosterone-treated mice that 
developed anxiety-related behavior [78, 79]. Under base-
line conditions, we did not detect differences in this path-
way in the ZnR/GPR39 KO mice in general. However, 
female mice showed significant variations in the levels 
of CaMKII in both the amygdala and hippocampus. This 
gender-specific phenotype may suggest that developmen-
tal changes in the global ZnR/GPR39 KO mouse model 
used in this study could potentially mask behavioral dif-
ferences between sexes. As such, we cannot exclude the 
possibility of developmental compensatory effects or the 
involvement of other systems in the behavioral pheno-
type. For example, immune system function and micro-
biota are major players in anxiety disorders [80]. Of note, 
loss of ZnR/GPR39 did not modulate immune responses 
in the digestive system of KO mice [81]. Similarly, no 
interaction was found between zinc deficiency and 
immune response effects on behavior [82].

In addition to increased anxiety, our data show that 
ZnR/GPR39 KO mice also have impaired motor coor-
dination. In contrast to KCC2 knockdown animals 
[35], ZnR/GPR39 KO mice show a pronounced effect 
in the rotarod test with a much shorter time to fall 
off the rod. While this could be attributed to loss of 
strength, direct measure of muscle strength indicated 
that these mice are not weaker than the WT mice. 
This suggests that the faster fall of the ZnR/GPR39 KO 
mice from the rotarod is likely associated with coordi-
nation deficits and/or anxiety itself. The pole test, also 
utilized for assessing motor coordination, revealed 
that the descent of ZnR/GPR39 KO mice was consider-
ably slower. This could be explained by the enhanced 
anxiety of the mice [83], together with their increased 
strength, enabling them to hold onto the pole and 
descend at a slower pace. Considering that ZnR/
GPR39 KO mice show even more muscle strength in 
the grip test, their impaired performance in both pole 
and rotarod tests suggests a coordination deficit rather 
than direct motor impairment. Finally, ZnR/GPR39 
KO mice displayed a slightly reduced distance traveled 
in the EPM test, which could be interpreted as a loco-
motor impairment. However, the results of the grip 
tests do not support a direct effect of reduced muscle 
strength in the ZnR/GPR39 KO mice. Therefore, we 
propose that the observed hypo-locomotion pattern 
may be attributed to the increased anxiety levels and 
impaired coordination in these mice. A link between 
loss of coordination and anxiety has been identified in 
humans [84–86]. A similar association is well-estab-
lished in mouse models. For example, the treatment 
with memantine, a drug inhibiting excitatory NMDA 
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function, resulted in enhanced anxiety and impaired 
motor coordination in mice, as assessed by the rotarod 
paradigm [87]. Moreover, increased anxiety in the 
EPM and OFT was reported in the mutant Headbanger 
(Hdb) model, which is characterized by coordination 
and balance deficit due to vestibular malformations. 
Using this model they further showed that balance 
training alleviate the Hdb mutants symptoms of anxi-
ety [88]. Furthermore, chronic stress induces a combi-
nation of anxiety-related behavior and motor deficits 
in mice, accompanied by alterations in neuronal pop-
ulations. The causality in these reports is not clear - 
whether anxiety and stress affect motor coordination 
or if the loss of motor coordination leads to anxiety. 
It will require further study to determine whether loss 
of ZnR/GPR39 and the observed increase in strength 
result in impaired coordination and thereby enhanced 
anxiety.

In conclusion, our results indicate that loss of ZnR/
GPR39 is associated with impaired KCC2 regulation in 
the amygdala and increased anxiety in both male and 
female mice. Additionally, we found that motor coordi-
nation, rather than muscle strength, is impaired in ZnR/
GPR39 KO mice, potentially enhancing anxiety-related 
behavior. These results suggest that ZnR/GPR39 pro-
vides an important mechanistic handle to the previously 
established link between zinc deficiency and anxiety [89]. 
Moreover, ZnR/GPR39 may serve as a significant target 
for regulating the inhibitory-excitatory balance in the 
amygdala.
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