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Abstract
Background  Major depressive disorder is a significant global cause of disability, particularly among adolescents. The 
dopamine system and nearby neuroinflammation, crucial for regulating mood and processing rewards, are central 
to the frontostriatal circuit, which is linked to depression. This study aimed to investigate the effect of post-weaning 
isolation (PWI) on depression in adolescent mice, with a focus on exploring the involvement of microglia and 
dopamine D1 receptor (D1R) in the frontostriatal circuit due to their known links with mood disorders.

Results  Adolescent mice underwent 8 weeks of PWI before evaluating their depression-like behaviors and the 
activation status of microglia in the frontostriatal regions. Selective D1-like dopamine receptor agonist SKF-81,297 was 
administered into the medial prefrontal cortex (mPFC) of PWI mice to assess its antidepressant and anti-microglial 
activation properties. The effects of SKF-81,297 on inflammatory signaling pathways were examined in BV2 microglial 
cells. After 8 weeks of PWI, female mice exhibited more severe depression-like behaviors than males, with greater 
microglial activation in the frontostriatal regions. Microglial activation in mPFC was the most prominent among the 
three frontostriatal regions examined, and it was positively correlated with the severity of depression-like behaviors. 
Female PWI mice exhibited increased expression of dopamine D2 receptors (D2R). SKF-81,297 treatment alleviated 
depression-like behaviors and local microglial activation induced by PWI; however, SKF-81,297 induced these 
alterations in naïve mice. In vitro, SKF-81,297 decreased pro-inflammatory cytokine release and phosphorylations of 
JNK and ERK induced by lipopolysaccharide, while in untreated BV2 cells, SKF-81,297 elicited inflammation.

Conclusions  This study highlights a sex-specific susceptibility to PWI-induced neuroinflammation and depression. 
While targeting the D1R shows potential in alleviating PWI-induced changes, further investigation is required to 
evaluate potential adverse effects under normal conditions.
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Background
Major depressive disorder is a leading cause of global 
disability and lost productive years [1, 2], with adoles-
cent onset typically occurring during late puberty at 
a prevalence rate of 4–5% [3, 4]. This onset is linked to 
significant physical and psychological changes related 
to neurodevelopment maturation [3, 4]. This emergence 
is associated with significant physical and psychologi-
cal changes related to neurodevelopment maturation [5, 
6]. Childhood maltreatment, including experiences like 
social neglect, peer rejection, and social isolation ampli-
fies the likelihood of developing depression and anxiety 
during adolescence [5, 6].

The dopamine (DA) system plays important role in 
regulating various aspects of mental and emotional well-
being, with its primary involvement in mood regulation, 
motivation, and the processing of rewards [7–9]. Influ-
ence of the frontostriatal (FS) circuit by intricate network 
of DA system [10, 11], is heavily involved in depression, 
as shown by functional magnetic resonance imaging 
studies over the past decade [7, 12–14]. Disruption of FS 
circuit is considered a correlate [15], a predictor [16], or 
even a cause [17] of depression.

A plethora of evidence has highlighted the interplay 
between the DA system and inflammatory responses 
[18]. Neuroinflammation would change the DA system, 
with pro-inflammatory cytokines possibly influencing 
DA receptor expression and function, potentially contrib-
uting to depressive symptoms [19–21]. Elevated inflam-
mation is associated with decreased FS connectivity and 
increased severity of anhedonia in depressed patients [8, 
22]. Chronic infusion of interferon-α disturbs DA sys-
tem in the FS circuit and causes depression in nonhuman 
primates [23, 24]. Interestingly, DA signaling also regu-
lates neuroinflammatory responses [25]. Stimulating DA 
receptors, such as the D1 receptor (D1R) and D2 receptor 
(D2R), inhibit the activation of microglia and astrocytes 
[26–28]. Furthermore, chronic inflammation has been 
recognized as a biological marker for major depressive 
disorder [29–31]. However, the underlying mechanism of 
crosstalk between the DA system and neuroinflammation 
in depression remains unclear.

This study aimed to investigate the interplay between 
inflammation and the DA system in the FS circuit of 
mice that experienced social isolation during adoles-
cence. The neural and behavioral development of rodents 
is believed to parallel the stages of human development 
[32, 33]. Puberty in mice typically occurs between 4 and 
6 weeks of age [34]. Therefore, to mimic the effects of 
social neglect and isolation experienced during adoles-
cence, mouse pups were subjected to post-weaning isola-
tion (PWI) for 8 weeks until early adulthood. It has been 
demonstrated that socially isolated adolescent mice can 
display depression-like symptoms similar to those seen in 

humans [5, 35–37]. Given the connection between neu-
roinflammation in the FS circuit and depression [38], we 
seek to elucidate how PWI affects depression-like behav-
iors and microglial activation changes in the FS circuit of 
adolescent mice. Furthermore, the equilibrium between 
D1R and D2R within the FS circuit is vital in mood regu-
lation, while an aberrant D1R/D2R ratio is associated 
with the development of mood disorders [39–42]. It has 
been suggested that the antidepressant effect of ketamine 
is achieved by activating D1R in the medial prefron-
tal cortex (mPFC) [43]. Therefore, we also explored the 
effects of SKF-81,297 (SKF), a selective D1-like dopamine 
receptor agonist, on neuroinflammatory responses in 
the FS regions and depression-like behavior in mice that 
received PWI treatment. Additionally, BV2 microglial 
cells were used to explore the potential molecular mecha-
nisms of SKF.

Methods
Animals
All experiments were approved by the National Cheng 
Kung University Institutional Animal Care and Use Com-
mittee (approval number: 110112), followed the National 
Institutes of Health Guide for the Care and Use of Lab-
oratory Animals. C57BL/6  N mice of both sexes were 
procured from the National Cheng Kung University 
Laboratory Animal Center (AAALAC accredited) and 
housed in a controlled environment (24 ± 1 °C, 12-h light/
dark cycle) with food and water ad libitum. Mice were 
randomly assigned to the group-housed (GH) and PWI 
groups. Weaning the mice at 3 weeks of age, then start-
ing 8 weeks of PWI. PWI mice were individually housed 
without enrichments after weaning, while GH mice were 
housed with two to three same-sex cagemates.

A total of 112 mice were used in this study. The first 
study included 80 mice, divided into 4 groups (2 sexes × 
GH or PWI) with 19 mice in each group, to investigate 
PWI-induced depression-like behaviors. After the behav-
ioral study, the mice were euthanized. From each group, 
9 mice were allocated for western blot analyses, while 
the remaining 10 were used for immunohistochemistry. 
The second study included 36 mice, divided into 4 groups 
(GH or PWI × Vehicle (Veh) or SKF-81297) with 9 mice 
in each group, to investigate the potential of SKF in res-
cuing PWI-induced depression-like behaviors. The sam-
ple size was determined based on published studies [36, 
44]. Details of animals used in this study were provided 
in Supplementary Table 1.

Forced swimming test (FST)
The FST was used to assess depressive-like behavior and 
the potential antidepressant effects of various substances 
in mice [45]. Briefly, mice were placed in a tank (30 cm 
height, 15  cm diameter) filled with water (23–25  °C) 



Page 3 of 17Zhao et al. Behavioral and Brain Functions            (2025) 21:6 

15 cm from the bottom for 6 min. Behavior was recorded 
during the last 4 min, and immobility time was presented 
as a percentage of immobility time.

Sucrose preference test (SPT)
The SPT assessed mice response to rewards and suscep-
tibility to anhedonia [45]. Mice were given two water 
bottles, one with distilled water and the other with 2% 
sucrose solution (Sigma-Aldrich, St. Louis, MO, USA) 
for 24 h. The positions of the bottles were alternated 12 h 
to prevent position preference. Sucrose preference was 
defined as the ratio of the consumed sucrose solution to 
the total consumed solution over 24 h.

Estrus cycle determination
Estrus cycle was determined using vaginal smears as 
described [46, 47]. Vaginal cell samples were collected 
by gently flushing the vaginal cavity with 20 µl of saline 
and spreading them on a glass slide. Once fully air-dried, 
the slide was subjected to staining with Hematoxylin 
and Eosin (Abcam, Cambridge, UK). Vaginal secretions 
comprise three primary cell types: leukocytes, cornified 
epithelial cells, and nucleated epithelial cells. Determin-
ing the estrous cycle phase under a microscope relied on 
the relative proportions of these cell types in the vaginal 
secretions. Mice in the proestrus and estrus phases are 
considered sexually receptive (SR), whereas mice in dies-
trus and metestrus are non-receptive (NR). The estrous 
cycle phase was determined before conducting the FST.

SKF administration
The SKF dosage and the timing of the post-administra-
tion behavioral test adhered to a previous publication 
[43]. Briefly, SKF (Cayman Chemical, Ann Arbor, MI, 
USA, #15067) was dissolved in artificial cerebrospinal 
fluid to make a 0.2% solution. One day before the 8-week 
PWI concluded, mice were anesthetized intraperitone-
ally with a mixture of 50 mg/kg Zoletil 50 (Virbac, Car-
ros, France) and 2.5  mg/kg xylazine (Bayer, Leverkusen, 
Germany) and received bilateral injections of SKF (0.5 
µL/side, infusion rate: 0.1 µL/min) into the prelimbic 
area of the mPFC (anteroposterior: +1.9  mm; mediolat-
eral: ±0.5 mm; ventral: 2.5 mm from the bregma) using a 
30-gauge stainless steel needle attached to a microsyringe 
that was powered by a controllable electric pump (Model: 
KDS 210, KD Scientific, Holliston, MA, USA). Initially, 
we performed stereotaxic surgery to inject Evans blue 
into the targeted area (stereotaxic coordinates: antero-
posterior: +1.9 mm, mediolateral: ±0.5 mm, and ventral: 
-2.5 mm from the bregma) to confirm accurate injection 
placement based on a brain atlas. In the formal experi-
ment, we verified the injection site location by assessing 
microglial activation (using Iba1 immunohistochemis-
try) along the needle injection tract one day post-surgery 

(Fig.  3B). To ensure their well-being, mice were kept 
warm until fully recovered. Following a previously pub-
lished protocol [43], the FST was conducted 18  h post-
SKF administration, and mice were sacrificed 6 h later.

BV2 microglial cell cultures
BV2 microglial cells (RRID: CVCL_0182) were cultured 
in Dulbecco’s Modified Eagle Medium F12 (DMEM/F12; 
Gibco, Invitrogen, Carlsbad, CA, USA) supplemented 
with 10% fetal bovine serum (Merck-Millipore, Biller-
ica, MA, USA) and 1% penicillin-streptomycin (Thermo 
Fisher Scientific, Waltham, MA, USA). Cultures were 
maintained in a humidified atmosphere with 5% CO2 and 
95% air at 37  °C. Subcultures were performed when the 
cell density reached 80% confluence, approximately every 
2–3 days.

For experiments, BV2 cells were seeded in 12-well 
plates at a density of 105 cells per well and cultured in 
1  ml of DMEM/F12. Sixteen hours after seeding, cells 
were pre-treated with 2.5 µM SKF or an equal volume 
of 0.1% DMSO (Veh control) for 30  min. Subsequently, 
cells were treated with 50 ng/ml lipopolysaccharide (LPS; 
Escherichia coli O55:B5, Sigma-Aldrich, #L2880), 20 ng/
ml recombinant mouse tumor necrosis factor (TNF; BD 
Biosciences, San Jose, CA, USA, #554589), or an equal 
volume of phosphate buffered saline (PBS, Veh control).

To assess the effects of SKF on LPS and TNF-induced 
inflammatory responses, a 2 (with or without SKF) x2 
(with or without LPS/ TNF) experimental design was 
employed. Cells were collected 60  min after LPS treat-
ment (15 min–2 h after TNF treatment), and conditioned 
media were collected 24 h after LPS or TNF treatment. 
Each analysis was based on three biological replicates 
obtained from three independent experiments.

Cell viability
BV2 microglial cells were seeded in 96-well culture plates 
at a density of 104 cells per well and incubated in 100 µl 
of DMEM/F12 medium until they adhered to the well 
bottom for 24  h. After cell adherence, 10  µl of CCK-8 
reagent (TargetMol, Washington, DC, USA) was added to 
each well for even distribution. The cells were incubated 
with CCK-8 for 1 h, followed by measuring absorbance at 
450 nm wavelength. This measurement allows quantifica-
tion of formazan production, directly proportional to the 
number of living cells within each well.

Western blot
The method for Western blotting was described else-
where [45]. Briefly, BV2 microglial cells lysates were 
centrifuged at 12,000×g for 15  min at 4  °C, and protein 
concentrations were determined. Ten µg of proteins were 
loaded into each well of a polyacrylamide gel, resolved, 
and transferred onto a polyvinylidene fluoride membrane 
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(Merck-Millipore, Billerica, MA, USA). The membrane 
was blocked with 5% non-fat milk and probed with pri-
mary antibodies diluted 1000-fold. All primary anti-
bodies were purchased from Cell Signaling Technology 
(Beverly, MA, USA), except for those targeting D1R 
(Atlas Antibodies, Stockholm, Sweden) and D2R (Merck-
Millipore). Secondary antibodies conjugated to horse-
radish peroxidase were added, and protein signals were 
detected using an ECL substrate (Perkin Elmer, Waltham, 
MA, USA). Membranes were imaged using X-ray films 
(Fujifilm, Tokyo, Japan). Supplementary Table 2 contains 
all the detailed information regarding the antibodies.

Immunohistochemistry
The method for immunohistochemistry was described 
previously [45]. Briefly, after receiving intraperitoneally 
injection with a mixture of Zoletil 50 (50 mg/kg) and xyl-
azine (2.5 mg/kg), mice were transcardially perfused with 
PBS and their brains were removed. The left hemispheres 
were post-fixed in 4% paraformaldehyde for 48 h at 4 °C, 
followed by 30% sucrose solution. The brains were sliced 
into 25 μm coronal sections and stored at -20  °C. Brain 
sections were treated with 5% H2O2, and blocked with 
3% normal goat serum for 1 h at room temperature. The 
free-floating sections were probed with rabbit anti-Iba1 
antibodies (1:1000; Wako Pure Chemical Industries, 
Osaka, Japan) overnight at room temperature followed by 
incubation with horseradish peroxidase conjugated goat 
anti-rabbit IgG (1:1000; Jackson ImmunoResearch, West 
Grove, PA, USA, #111-035-003) using 3,3’-diaminobenzi-
dine tetrahydrochloride (Sigma-Aldrich) as the substrate. 
Supplementary Table 2 contains all the detailed informa-
tion regarding the antibodies. Sections were mounted on 
silane-coated slides (Microslides, MUTO Pure Chemi-
cals, Tokyo, Japan, #5116), air-dried overnight, dehy-
drated with escalating concentrations of ethanol, and 
coverslipped with Micromount xylene-based mounting 
medium (Leica Biosystems, Nussloch, Germany).

Quantifying the immunostained area and cell density
We measured the areas and densities of Iba1-immunos-
tained (Iba1+) cells in specific brain regions: the mPFC 
(anterior cingulate, prelimbic, and infralimbic subre-
gions) at bregma 1.8  mm, anterior caudate/putamen 
(CPu) at bregma 0.8 mm, middle CPu at bregma 0.0 mm, 
posterior CPu at bregma − 0.8 mm, and nucleus accum-
bens (NAc) core at bregma 1.3 mm. The total Iba1+ signal 
areas and cell counts were quantified within a desig-
nated 330 μm x 330 μm box at the center of each region. 
Average areas and cell counts were determined for each 
subregion of the mPFC, CPu, and NAc core. For the 
SKF study, measurements were made in the prelimbic 
region adjacent to the injection site. Images of sections 
were taken by the digital camera (Model: Axiocam 305 

Color, Carl Zeiss, Oberkochen, Germany) under an opti-
cal microscope (Carl Zeiss). Iba1+ areas were calculated 
using ImageJ software (version 1.51 w, NIH, Bethesda, 
MD, USA) by measuring areas exceeding a predefined 
background threshold, consistent across all sections.

RNA extraction and Real-time PCR (RT-PCR)
Extract total RNA from BV2 microglial cells was 
extracted using the Quick-RNA Miniprep Plus Kit (Zymo 
Research, Irvine, USA, #R1057) following the manufac-
turer’s instructions. Treat RNA with DNase I to remove 
genomic DNA contamination. Reverse-transcribe puri-
fied mRNA into cDNA using the PrimeScript RT Reagent 
Kit (Takara, Japan, #RR037A) according to the manufac-
turer’s instructions. RT-PCR was performed with SYBR-
Green MasterMix (Applied Biosystems, Foster City, CA, 
USA) in a final volume of 20 µL to quantify relative gene 
expression on a StepOnePlus RT- PCR system (Applied 
Biosystems). Each RT-PCR reaction included a subse-
quent melting-curve analysis to ensure specificity. The 
RT-PCR program consisted of an initial denaturation at 
95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s 
and 60 °C for 1 min. The primer sequences used were as 
follows: D1R (forward): 5′-​G​T​A​G​C​C​A​T​T​A​T​G​A​T​C​G​T​C​
A​C-3′, D1R (reverse): 5′-​G​A​T​C​A​C​A​G​A​C​A​G​T​G​T​C​T​T​
C​A​G-3′; D2R (forward): 5′-​C​T​G​G​T​G​G​C​C​A​C​A​C​T​G​G​
T​T​A​T-3′D2R (reverse): 5′-​G​G​C​A​C​A​C​A​G​G​T​T​C​A​A​G​A​
T​G​C-3′; D5R (forward): 5′-​C​T​A​C​G​A​G​C​G​C​A​A​G​A​T​G​A​
C​C-3′, D5R (reverse): 5′-​C​T​C​T​G​A​G​C​A​T​G​C​T​C​A​G​C​T​
G-3′; GAPDH (forward): 5′-​T​G​C​A​G​T​G​G​C​A​A​A​G​T​G​G​
A​G​A​T​T-3′, GAPDH (reverse): 5′-​T​T​G​A​A​T​T​T​G​C​C​G​T​
G​A​G​T​G​G​A-3. Relative gene expression was quantified 
using cycle threshold values, with GAPDH as the internal 
control.

Cytokine concentrations measurement
The concentrations of TNF and IL-6 in the conditioned 
media were determined by commercial mouse TNF (BD 
Biosciences) and IL-6 (BD Biosciences) ELISA kits fol-
lowing the manufacturer’s instructions.

Statistical analysis
Data were expressed as mean ± standard deviation (SD). 
Significance was set at p < 0.05. The data followed a nor-
mal distribution. The unpaired two-tailed Student’s t-test 
was utilized to examine a single independent variable. 
To analyze the effect of a single variable in datasets with 
more than two groups, Dunnett’s multiple comparison 
tests were employed following the one-way ANOVA. 
Two-way ANOVA was used to analyze all 2 × 2 factorial 
designs (e.g., PWI×sex, PWI×SKF, LPS/TNF×SKF, and 
durarion×SKF) and possible interactions. Sidak’s mul-
tiple comparisons test was done if interaction or the main 
variables were significant. The association between FST 
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and Iba1 signals was evaluated using the Pearson corre-
lation. All statistics results were provided in Supplemen-
tary Table 3.

Results
PWI induced more pronounced depression-like behaviors 
in female adolescent mice than those of males
Both female and male mouse pups were subjected to 
varying durations of PWI to study sex-specific differences 
and the influence of isolation duration on depression-like 
behaviors. Two-way ANOVA revealed that neither the 
6-week PWI duration nor sex significantly influenced 
SPT outcomes (Two-way ANOVA: F(1, 50) = 3.644, 
p = 0.062 for the PWI effect; F(1, 50) = 0.393, p = 0.534 
for the sex effect) (Supplementary Fig.  1A). However, 6 
weeks of PWI significantly affected immobility time in 
the FST (Two-way ANOVA: F(1, 72) = 17.320, p < 0.001 
for the PWI effect) (Supplementary Fig.  1B). Post-hoc 
analyses indicated that 6-week PWI resulted in increased 
immobility in female mice (p < 0.001), but not male mice 
(p = 0.066). Extending the PWI duration to 8 weeks, 
two-way ANOVA revealed that 8-week PWI duration 
significantly influenced SPT outcomes, with no signifi-
cant effect of sex (Two-way ANOVA: F(1, 50) = 19.410, 
p < 0.001 for the PWI effect; F(1, 50) = 0.195, p = 0.660 for 
the sex effect) (Fig. 1A). However, both PWI and sex had 
significant effects on FST outcomes (Two-way ANOVA: 
F(1, 72) = 17.340, p < 0.001 for the PWI effect; F(1, 
72) = 8.500, p = 0.005 for the sex effect) (Fig. 1B). Post-hoc 
results showed that PWI duration to 8 weeks significantly 
decreased sucrose preference in both female (p = 0.028) 
and male (p = 0.001) (Fig.  1A) and increased immobility 
only in female mice during the FST (p < 0.001) (Fig. 1B). 
These results highlighted sex-specific variations in 
response to prolonged social isolation, impacting reward 
sensitivity and depressive-like behavior.

Given that hormonal fluctuations can influence behav-
iors [48, 49], we categorized the estrus cycle of these 
female mice immediately before FST. Mice were grouped 
into SR (proestrus and estrus) and NR (metestrus and 
diestrus) and compared their FST scores. The result 
revealed that the estrus cycle had no discernible influ-
ence on FST outcomes (unpaired T-test: t = 0.1, degree 
of freedom (df) = 18, p = 0.950 for 6w-PWI; t = 0.8, df = 36, 
p = 0.450 for 8w-PWI) (Supplementary Fig.  2). These 
findings suggested that adolescent female mice are 
more susceptible to displaying depression-like behaviors 
after 8 weeks of PWI compared to males. Consequently, 
we utilized the 8-week PWI paradigm for subsequent 
experiments.

PWI caused microglial activation in the FS areas
We examined the degrees of microglial activation in three 
FS areas, mPFC, CPu, and NAc after 8 weeks of PWI 

treatment. Microglia were detected by immunostaining 
for Iba1, a marker for both resting and activated microg-
lia, and assessed the degree of microglial activation by 
quantifying the areas (%) with Iba1-immunoreactive 
signals and the cell densities within the chosen regions 
[50]. Results showed that 8 weeks of PWI led to a signifi-
cant increase in the Iba1+ area (Two-way ANOVA: F(1, 
36) = 22.310, p < 0.001 for the PWI effect) (Fig. 1C and D). 
Post-hoc analysis showed a significant difference between 
GH and PWI groups in females (p < 0.001) but not in 
males (p = 0.447). Similarly, PWI significantly increased 
cell density (Two-way ANOVA: F(1, 36) = 20.270, 
p < 0.001 for the PWI effect), with a significant increase in 
females (p < 0.001) and no significant difference in males 
(p = 0.822) in the mPFC (Fig. 1C and E). In the CPu, PWI 
also significantly increased the Iba1+ area (Two-way 
ANOVA: F(1, 36) = 4.598, p = 0.001 for the PWI effect) 
(Fig. 1F and G). However, post-hoc analysis did not show 
significant differences between GH and PWI groups in 
either females (p = 0.127) or males (p = 0.460). Addition-
ally, PWI significantly increased cell density in the CPu 
(Two-way ANOVA: F(1, 36) = 5.333, p = 0.027 for the PWI 
effect), with a significant increase in females (p = 0.046) 
but not in males (p = 0.614) (Fig. 1F and H). Analysis of 
microglial levels in the NAc showed that PWI did not sig-
nificantly affect the Iba1+ area (Two-way ANOVA: F(1, 
36) = 3.130, p = 0.085 for the PWI effect), with no signifi-
cant differences between GH and PWI groups in either 
females (p = 0.401) or males (p = 0.379) (Fig.  1I and J). 
Although PWI had a marginally significant effect on cell 
density in the NAc (Two-way ANOVA: F(1, 36) = 4.448, 
p = 0.042 for the PWI effect), post-hoc analysis revealed 
no significant differences between GH and PWI groups 
in females (p = 0.059) or males (p = 0.726) (Fig. 1I and K). 
Collectively, in the CPu (Fig. 1F-H) and NAc (Fig. 1I-K) 
of female mice, 8 weeks of PWI led to a mild increase in 
the number of Iba1+ cells without significantly affecting 
the Iba1+ area. None of these changes were observed in 
male mice subjected to 8 weeks of PWI treatment.

To unveil the relationships between microglial activa-
tion and depressive-like behaviors, we explored the corre-
lation between the duration of immobility in the FST and 
the Iba1+ area and cell density in three areas related with 
the FS circuit. The results showed positive correlations 
between the duration of immobility in the FST and both 
the Iba1+ areas and cell densities in all three FS-related 
areas. Among these, the mPFC exhibited the highest 
correlations, with the highest Pearson r values (r = 0.59, 
p < 0.001 for microglial cell density; r = 0.52, p < 0.001 for 
Iba1+ area. Figure  2A, and D). These findings suggested 
a connection between microglial activation, particularly 
in the mPFC, and the expression of depressive behaviors.
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Fig. 1  Eight-week PWI induced depression-like behaviors and microglial activation in FS circuit-related brain regions of mice. (A) Results of sucrose prefer-
ence in SPT after 8 weeks of PWI. n = 8 cages of GH and 19 cages of PWI. (B) Results of the exhibition of immobility in FST after 8 weeks of PWI. n = 19 mice. 
(C, F, and I) Representative micrographs of Iba1 immunostaining in the prelimbic region of the mPFC, the middle region of the CPu, and the core region 
of the NA inferior to the anterior commissure. (D, G, and J) Quantitative results of Iba1+ area in mPFC, CPu, and NAc. (E, H, and K) Quantitative results of 
Iba1+ density in mPFC, CPu, and NAc. Data were expressed as mean ± SD. Sidak’s multiple comparisons test was used following two-way ANOVA. Post-hoc 
results showed that *p < 0.05, ***p < 0.001 indicated significant differences between GH and PWI mice, while #p < 0.05, ##p < 0.01, ###p < 0.001 represented 
significant differences between female and male mice
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Intra-mPFC SKF injection alleviated PWI-induced local 
microglial activation and depressive-like behaviors
We then determined the relative expression levels of 
D1R and D2R in the mPFC of PWI mice (Supplementary 
Fig. 3). Our results demonstrated a significant impact of 
both 8 weeks of PWI and sex on D2R levels (Two-way 
ANOVA: F(1, 32) = 5.940, p = 0.021 for the PWI effect, 
F(1, 32) = 4.245, p = 0.048 for the PWI effect) (Supple-
mentary Fig.  3A and C). Post-hoc comparisons showed 
a significant increase in females (p = 0.042), while no sig-
nificant change was observed in males (p = 0.529). There 
were no significant alterations in D1R levels in both PWI 
effect (Two-way ANOVA: F(1, 32) = 1.197, p = 0.282 for 
the PWI effect) and sex effect (Two-way ANOVA: F(1, 
32) = 2.497, p = 0.124 for the sex effect) (Supplementary 
Fig. 3A and B). In comparing the PWI group to the GH 
group in female mice, there appeared to be a tendency 
towards a lower D1R/D2R ratio by approximately 20% 
(Two-way ANOVA: F(1, 32) = 0.985, p = 0.328 for the PWI 
effect, F(1, 32) = 9.407, p = 0.004 for the sex effect) (Sup-
plementary Fig.  3A and D). However, these differences 
were not statistically significant in the post-hoc analysis 
(p = 0.242 for females; p = 0.986 for males).

To address the altered D1R/D2R ratio in the mPFC 
of PWI mice, we considered two potential approaches: 
inhibiting D2R signaling or enhancing D1R signaling 
pathways. While D2R antagonists have shown potential 

in alleviating depression symptoms, their use is associ-
ated with significant adverse effects, such as extrapy-
ramidal symptoms and hyperprolactinemia [51–53]. 
Therefore, we decided to administer the D1-like dopa-
mine receptor agonist SKF into the mPFC of PWI female 
mice (Fig.  3B). Two-way ANOVA indicated significant 
interactions between PWI and SKF in the FST immobil-
ity time (Two-way ANOVA: F(1, 32) = 14.950, p < 0.001) 
(Fig. 3A), as well as the Iba1+ areas (Two-way ANOVA: 
F(1, 32) = 17.580, p < 0.001) (Fig. 3C and D) and cell den-
sities (Two-way ANOVA: F(1, 32) = 11.310, p = 0.002) 
(Fig. 3C and E) in the mPFC. Post-hoc analyses revealed 
that SKF significantly alleviated the PWI-induced 
increases in FST immobility time (p = 0.016) (Fig. 3A), the 
Iba1+ areas (p = 0.011) (Fig. 3C and D), and the Iba1+ cell 
densities (p = 0.003) (Fig.  3C and E). However, in naïve 
GH mice, SKF led to an increase in FST immobility time 
(p = 0.025) (Fig. 3A) and the total Iba1+ areas (p = 0.011) 
(Fig. 3C and D).

SKF modulated inflamagen-elicited inflammatory 
responses in BV2 microglial cells
Next, we evaluated the expression of D1R, D2R, and D5R 
genes in BV2 microglial cells under basal and LPS-stim-
ulated conditions. RT-PCR analysis confirmed the pres-
ence of D1R, D2R, and D5R genes in BV2 cells (Fig.  4). 
Following a 1-hour LPS treatment, mRNA levels of 

Fig. 2  Iba1+ area and density are positively correlated with the immobility time in the FST. Correlations between the immobility time in the FST and Iba1+ 
areas (A, B, and C), as well as between the immobility time in the FST and Iba1+ cell density (D, E, and F) in the mPFC, CPu, and NAc. The Pearson correla-
tion coefficient (r) and its corresponding significant p values (*p < 0.05, **p < 0.001, and ***p < 0.001) were given for each analysis. Data points represented 
individual samples, with the dashed line indicating the best-fit line
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D1R (unpaired T-test: t = 14.3, df = 10, p < 0.001) and 
D2R (unpaired T-test: t = 7.9, df = 10, p < 0.001) signifi-
cantly increased (Fig.  4A and B), whereas D5R expres-
sion remained unchanged (unpaired T-test: t = 1.7, 
df = 10, p = 0.111) (Fig.  4D). Furthermore, the D1R/D2R 
ratio decreased under these inflammatory conditions 
(unpaired T-test: t = 2.9, df = 10, p = 0.016) (Fig. 4C), con-
sistent with observations in PWI female mice (Supple-
mentary Fig. 3).

Subsequently, we investigated the effect of SKF on 
microglial inflammatory responses in cultured BV2 
microglial cells. D1R, a G protein-coupled receptor, acts 
as a crucial regulator of the MAPK signaling pathway, 
involving p38, ERK, and JNK [54]. Considering the cru-
cial role of the MAPK and NF-κB pathways in regulating 
transcriptional activity to modulate the secretion of pro-
inflammatory cytokines [55–58]., we focused our investi-
gation on these signaling cascade. Initially, we found that 

SKF concentrations exceeding 5 µM induced cell death in 
BV2 microglial cells (One-way ANOVA: F(3, 32) = 1.613, 
p < 0.001; post-hoc analysis showed p = 0.010 compared to 
0 µM) (Supplementary Fig. 4). Consequently, we selected 
the non-toxic dose of 2.5 µM for further investigations 
(One-way ANOVA: F(3, 32) = 1.613, p < 0.001; post-hoc 
analysis showed p = 0.961 compared to 0 µM). To explore 
the efficacy of LPS-induced inflammatory responses in 
BV2 microglial cells, we assessed the activation status 
of NF-κB, the key mediator associated with inflamma-
tion [59]. The results showed a dose-dependent trend in 
NF-κB p65 phosphorylation between 25 and 250 ng/mL 
following a 1-hour LPS treatment (One-way ANOVA: 
F(4, 10) = 0.824, p = 0.007) (Supplementary Fig.  5). We 
selected a relatively stable dose of 50 ng/ml to induce 
the inflammatory response (Post-hoc analysis showed 
p = 0.010 compared to 50 ng/ml). Based on prior observa-
tions [59–61], we evaluated the phosphorylation levels of 

Fig. 3  SKF alleviated PWI-induced microglial activation and depressive-like behaviors. (A) Quantitative results of the immobility time in FST. (B) Repre-
sentative figure showing the needle trajectory for SKF injection into the prelimbic area of the mPFC. The image on the right depicted the needle tract 
resulting from stereotaxic surgery aimed at targeting the prelimbic area of the mPFC. The symbols (✕/◇/△/○) on left mark the specific locations of 
the injection sites. Take three mice as representatives for each group. Cg1: cingulate area 1; PrL: prelimbic cortex; IL: infralimbic cortex. (C) Representative 
micrographs of Iba1 immunostaining in the prelimbic region of the mPFC. (D) Quantitative results of Iba1+ area in mPFC. (E) Quantitative results of Iba1+ 
density in mPFC. n = 9 mice. Data were expressed as mean ± SD. Sidak’s multiple comparisons test was used following two-way ANOVA. Post-hoc results 
showed that *p < 0.05 and **p < 0.01 indicated significant differences between Veh and SKF mice, while #p < 0.05, ##p < 0.01, and ###p < 0.001 represented 
significant differences between GH and PWI mice
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p38 and ERK1/2, JNK and p65 at 1 h following the LPS 
treatment (Fig. 5A). Furthermore, levels of IL-6 and TNF 
in the conditioned media were quantified 24 h post-LPS 
treatment.

Our results showed that LPS induced phosphorylation 
of p38 (Two-way ANOVA: F(1, 32) = 21.100, p < 0.001 
for the LPS effect; post-hoc comparisons between PBS 
and LPS treatment showed p = 0.001 in Veh group and 
p = 0.022 in SKF group), ERK (Two-way ANOVA: F(1, 
32) = 20.600, p < 0.001 for the LPS effect; post-hoc com-
parisons between PBS and LPS treatment showed 
p < 0.001 in Veh group and p = 0.114 in SKF group), 
JNK (Two-way ANOVA: F(1, 32) = 127.000, p < 0.001 
for the LPS effect; post-hoc comparisons between PBS 
and LPS treatment showed p < 0.001 in Veh group and 
p < 0.001 in SKF group), and p65 (Two-way ANOVA: 
F(1, 32) = 109.000, p < 0.001 for the LPS effect; post-hoc 
comparisons between PBS and LPS treatment showed 
p < 0.001 in Veh group and p < 0.001 in SKF group) after 
1  h (Fig.  5B-F). Administering SKF 30  min prior to the 
LPS treatment did not affect p38 (Two-way ANOVA: F(1, 
32) = 0.983, p = 0.329 for SKF effect; post-hoc compari-
sons between Veh and SKF treatment showed p = 0.987 
in PBS group and p = 0390 in LPS group) (Fig.  5C) and 
p65 (Two-way ANOVA: F(1, 32) = 0.670, p = 0.419 for 
SKF effect; post-hoc comparisons between Veh and SKF 
treatment showed p = 0.998 in PBS group and p = 0479 
in LPS group) (Fig.  5F) phosphorylation, but signifi-
cantly reduced ERK (Two-way ANOVA: F(1, 32) = 5.260, 
p = 0.029 for SKF effect; post-hoc comparisons between 
Veh and SKF treatment showed p = 0.917 in PBS group 

and p = 0.014 in LPS group) (Fig.  5D) and JNK (Two-
way ANOVA: F(1, 32) = 2.020, p = 0.165 for SKF effect; 
post-hoc comparisons between Veh and SKF treatment 
showed p = 0.901 in PBS group and p = 0.042 in LPS 
group) (Fig.  5E) phosphorylation levels. Furthermore, 
LPS exposure significantly increased the production of 
IL-6 (Two-way ANOVA: F(1, 32) = 649.000, p < 0.001 for 
LPS effect; post-hoc comparisons between PBS and LPS 
treatment showed p < 0.001 in Veh group and p < 0.001 in 
SKF group) (Fig.  5G) and TNF (Two-way ANOVA: F(1, 
32) = 2298.000, p < 0.001 for LPS effect; post-hoc compar-
isons between PBS and LPS treatment showed p < 0.001 
in Veh group and p < 0.001 in SKF group) (Fig.  5H) in 
BV2 microglial cells. Pre-treatment with SKF effec-
tively inhibited the LPS-induced elevation of IL-6 (Two-
way ANOVA: F(1, 32) = 12.600, p = 0.001 for SKF effect; 
post-hoc comparisons between Veh and SKF treatment 
showed p = 0.956 in PBS group and p < 0.001 in LPS 
group) and TNF (Two-way ANOVA: F(1, 32) = 143.000, 
p < 0.001 for SKF effect; post-hoc comparisons between 
Veh and SKF treatment showed p = 0.732 in PBS group 
and p < 0.001 in LPS group) levels (Fig. 5G and H).

The anti-inflammation effect of SKF was further 
validated in TNF-treated BV2 microglial cells using a 
treatment protocol slightly different from that of LPS 
(Supplementary Fig.  6A). TNF triggered elevated phos-
phorylation of p38, ERK, and JNK within 15 min, followed 
by p65 phosphorylation after 2 h (Supplementary Fig. 6B-
F). Pre-treatment with SKF did not inhibit the TNF-
induced phosphorylation of p38 (Two-way ANOVA: 
F(1, 32) = 0.000, p = 0.991 for the SKF effect; post-hoc 
comparisons between Veh and SKF treatment showed 
p = 0.974 in PBS group and p = 0.978 in TNF group), 
ERK (Two-way ANOVA: F(1, 32) = 0.638, p = 0.430 for 
the SKF effect; post-hoc comparisons between Veh 
and SKF treatment showed p = 0.959 in PBS group and 
p = 0.319 in TNF group), and p65 (Two-way ANOVA: 
F(1, 32) = 0.403, p = 0.530 for the SKF effect; post-hoc 
comparisons between Veh and SKF treatment showed 
p = 0.535 in PBS group and p = 0.999 in TNF group) 
(Supplementary Fig. 6C, D, and F). However, it reduced 
levels of phosphorylated JNK (Two-way ANOVA: F(1, 
32) = 3.267, p = 0.080 for the SKF effect; post-hoc compar-
isons between Veh and SKF treatment showed p = 0.980 
in PBS group and p = 0.047 in TNF group) (Supplemen-
tary Fig. 6E). TNF also increased IL-6 production in BV2 
cells (Two-way ANOVA: F(1, 32) = 6.210, p = 0.018 for the 
TNF effect; post-hoc comparisons between PBS and TNF 
treatment showed p < 0.001 in Veh group and p = 0.052 in 
SKF group) (Supplementary Fig. 6G). Pre-treatment with 
SKF mitigated the TNF-induced elevation of IL-6 levels 
(Two-way ANOVA: F(1, 32) = 2.010, p = 0.166 for the SKF 
effect; post-hoc comparisons between Veh and SKF treat-
ment showed p = 0.008 in PBS group and p < 0.001 in TNF 

Fig. 4  Gene levels of D1R, D2R, and D5R were stimulated LPS treatment 
in BV2 microglial cells. (A) Levels of D1R. (B) Levels of D2R. (C) Levels of 
D1R/D2R ratio. (D) Levels of D5R. n = 6. Data were expressed as mean ± SD, 
and analyzed with an unpaired two-tailed Student’s t-test. *p < 0.05 and 
***p < 0.001 indicate significant differences compared to PBS treatment
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group) (Supplementary Fig. 6G). Intriguingly, SKF alone 
increased IL-6 production in PBS-treated BV2 cells (Sup-
plementary Fig. 6G).

These observations led us to re-examine the effect 
of SKF on cytokine production in naïve BV2 cells. The 
results showed that SKF induced p38 and ERK phosphor-
ylation at 15  min (Two-way ANOVA: F(3, 64) = 4.533, 

p = 0.037 for the SKF effect; post-hoc comparisons 
between Veh and SKF treatment showed p = 0.048 at 
15 min) and 30 min (Two-way ANOVA: F(3, 64) = 0.309, 
p = 0.580 for the SKF effect; post-hoc comparisons 
between Veh and SKF treatment showed p = 0.017 at 
30  min), respectively (Fig.  6A-C), while not affecting 
JNK (Two-way ANOVA: F(3, 64) = 0.238, p = 0.627 for the 

Fig. 5  SKF partially blocked LPS-induced inflammatory responses in BV2 microglial cells. (A) The experimental timeline. (B) Representative Western blot 
images. (C) Levels of pp38. (D) Levels of pERK. (E) Levels of pJNK. (F) Levels of pp65. (G) Levels of IL-6 in conditioned media. (H) Levels of TNF in condi-
tioned media. n = 9. Data were expressed as mean ± SD. Sidak’s multiple comparisons test was used following two-way ANOVA. Post-hoc results showed 
that *p < 0.05 and ***p < 0.001 indicated significant differences between Veh and SKF treatment, while #p < 0.05, ##p < 0.01, and ###p < 0.001 represented 
significant differences between PBS and LPS treatment. Please refer to Supplementary Fig. 7 for whole Western blots
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SKF effect) or p65 (Two-way ANOVA: F(3, 64) = 0.118, 
p = 0.733 for the SKF effect) (Fig.  6A, D, and E). More-
over, SKF triggered the secretion of the pro-inflammatory 
cytokines IL-6 (unpaired T-test: t = 3.9, df = 16, p = 0.001) 
and TNF (unpaired T-test: t = 4.3, df = 16, p < 0.001) in 
naïve BV2 cells (Fig. 6F and G).

Discussion
In this study, we demonstrated that female mice, when 
exposed to social isolation during their adolescent 
phase, displayed depression-like behaviors. This phe-
notype was less pronounced in male mice. In addition 
to these behavioral changes, social isolation triggered 

microglial activation in FS areas of female mice, which 
was also less evident in their male counterparts. Notably, 
the degree of microglial activation in the mPFC was the 
most prominent among the three investigated FS areas, 
and positively correlated with the severity of depression-
like behavior. Administering SKF into the mPFC reduced 
microglial activation and improved depressive behaviors, 
indicating a potential therapeutic target. This study high-
lights a female-specific vulnerability to adolescent social 
isolation, particularly in terms of neuroinflammation and 
the development of depression.

It is widely recognized that women exhibit higher diag-
nostic rates, along with distinct symptoms and triggers 

Fig. 6  SKF induced inflammatory responses in BV2 microglial cells. (A) Representative Western blot images. (B) Levels of pp38. (C) Levels of pERK. (D) Lev-
els of pJNNK. (E) Levels of pp65. n = 9. Data were expressed as mean ± SD. Sidak’s multiple comparisons test was used following two-way ANOVA. Post-hoc 
results showed that *p < 0.05 indicated significant differences between Veh and SKF treatment. (F) Levels of IL-6 in conditioned media. (G) Levels of TNF 
in conditioned media. n = 9. Data were expressed as mean ± SD, analyzed with an unpaired two-tailed Student’s t-test. *p < 0.05, **p < 0.01, and ***p < 0.001 
indicate significant differences compared to Veh treatment. Please refer to Supplementary Fig. 8 for whole Western blots
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compared to men [62]. Epidemiological studies have 
shown significant shifts in depressive symptoms among 
girls during early adolescence, with prevalence rates 
of depressive disorders more than twice as high in girls 
compared to boys by mid-teenage years [63]. Our study 
confirms that adolescent female mice are more suscep-
tible to social isolation stress and more prone to develop-
ing depression-like behaviors. Disturbances in hormonal 
systems are known to play a role in the development of 
depression in both humans and mice [64–66]. However, 
PWI-induced depressive behavior seems independent of 
the estrus cycle. Other studies have indicated alterations 
in oxytocin and corticosterone levels in female mice dur-
ing social isolation [67–69], implying the involvement of 
hormonal pathways beyond gonadal hormones. The pre-
cise mechanism underlying the observed sex effect war-
rants further investigation in future research.

The SPT and the FST are frequently used behavioral 
tests in preclinical research to investigate depression-like 
behaviors and evaluate the effects of potential antide-
pressant treatments in rodents [70–72]. However, these 
two behavioral tests probe different emotion-related 
behaviors and are associated with distinct neural cir-
cuits [70, 73]. Alterations in the SPT provide insights 
into changes in reward and pleasure circuits [73], which 
are regulated by various brain regions, including the 
ventral tegmental area, NAc, and PFC [74, 75]. Particu-
larly, the mPFC is associated with decision-making emo-
tional regulation, and reward-related behaviors [76]. On 
the other hand, the FST, which examines the impact of 
antidepressant medications and evaluates interventions 
intended to induce or alleviate depressive-like states [77], 
primarily delves into the neural circuits associated with 
coping with stress-inducing situations and the regula-
tion of immobility [71, 72]. The hypothalamic-pituitary-
adrenal axis and the serotonergic system are among the 
neural systems implicated in the FST [78]. Moreover, the 
PFC, especially the infralimbic and prelimbic regions, is 
instrumental in controlling stress responses and coping 
strategies [76, 79], determining whether an animal exhib-
its active or passive responses during the test [80]. Our 
study observed that an 8-week PWI induced anhedonia 
in both male and female mice, as evidenced by changes in 
sucrose preference in the SPT. However, only female mice 
displayed increased immobility in the FST. These findings 
highlight the importance of considering the hormonal 
and neural circuits and behavioral aspects assessed by 
the SPT and the FST when studying the impact of psy-
chosocial stress on depression-like behaviors in mice of 
different sexes.

Studies have consistently found that individuals with 
depression often exhibit elevated levels of inflammatory 
markers in their blood and cerebrospinal fluid, including 
cytokines such as IL-1β, IL-6, and TNF [29–31]. These 

elevated markers have been associated with depres-
sive symptoms. Chronic stress can activate microglia 
and trigger inflammatory responses [81]. Increasing 
evidence indicates that neuroinflammation, including 
microglial activation, within the FS-related areas plays 
a pivotal role in the development of depression [82, 83]. 
Consistent with these findings, we found significant cor-
relations between microglial activation in the FS areas 
and the severity of depression-like behaviors, especially 
in the mPFC, highlighting its crucial role in this con-
nection. Neuroinflammation in the FS areas can disrupt 
neurotransmitter balance, including serotonin, DA, and 
glutamate, which is associated with depression [84–87]. 
Microglial activation in these areas can also disrupt 
nearby neural circuits and impair DA signaling, possibly 
contributing to mood disorder symptoms [21, 88]. Con-
sidering differing roles of microglia in males and females 
[89, 90], and the link between neuroinflammation and 
depression, additional research is needed to untangle the 
causal relationship, particularly in the context of adoles-
cent and sex-specific factors.

It has been demonstrated that both D1R and D5R are 
expressed in the mPFC neurons [43, 91, 92]. Stimula-
tion of D1R neurons in the mPFC, either optogenetically 
or chemogenetically, results in rapid and lasting antide-
pressant effects [43, 91], while inhibition of these neu-
rons blocks the antidepressant effects of ketamine [43]. 
Additionally, D5R immunoreactivity is present in both 
excitatory pyramidal neurons and inhibitory interneu-
rons in the mPFC [92]. Activation of D5R in the mPFC 
increases BDNF expression and signaling, enhances 
GAD67 expression, and modulates the Akt/GSK-3β 
pathways [93], although its antidepressant effects still 
require further validation. Regarding microglia isolated 
from the mPFC, qPCR analysis reveals D1R expression, 
but not D5R [94]. However, our qPCR studies on BV2 
cells detected D5R mRNA expression, although it did 
not respond to LPS treatment. Therefore, we consider 
the contribution of SKF through D5R in the mPFC to 
be minimal in this study. Given the established role of 
neuronal D1R in mood disorders [43, 91], we focused 
on investigating SKF’s direct effects on microglia, par-
ticularly as microglial activation in FS areas has been 
implicated in mood disorders [21, 88]. We acknowledge 
that further validation of D1R and D5R expression in the 
mPFC, as well as a more detailed exploration of their role 
in SKF’s effects, could provide additional insights.

The balance between D1R and D2R in the FS circuit is 
recognized as essential for mood regulation [39, 40], with 
an altered D1R/D2R ratio linked to mood disorders [41, 
42]. We found that activation of D1-like dopamine recep-
tors alleviated PWI-induced depression-like behaviors 
and microglial activation in the mPFC of female mice. 
D1R activation is known to modulate the activity of 
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different types of neurons in the mPFC, including pyra-
midal neurons and interneurons [43]. This modulation 
can affect the balance of excitatory and inhibitory neuro-
transmission in the mPFC, which is critical for mood reg-
ulation [95, 96]. Dopaminergic modulation in the mPFC 
not only mitigate the HPA axis response of chronic stress 
on mood [97], also modulate neuroinflammation [94]. 
D1R agonists have demonstrated anti-inflammatory 
effects in the central nervous system [18, 98]. Hence, we 
suggest that the antidepressant effect of SKF is partially 
attributable to D1-like dopamine receptor-mediated anti-
microglial activation.

Administering SKF into the mPFC of naïve mice led 
to local microglial activation and the development of 
depression-like behaviors. It is possible that SKF dis-
rupted the D1R/D2R balance in these mice, subsequently 
triggering microglial activation and the onset of depres-
sion. Given the established role of neuronal D1R in mood 
disorders [43, 99] and the identification of all five sub-
types of DA receptors on microglia [27, 100–102], we 
further investigated the impact of SKF on BV2 microglial 
cells, as microglial activation in FS areas is implicated in 
mood disorder [21, 88]. The in vitro findings confirmed 
that, under conditions of inflamagen stimulation, SKF 
appears to suppress pro-inflammatory cytokine produc-
tion probably via the JNK-dependent pathway. On the 
other hand, in the absence of stimulation, SKF triggered 
pro-inflammatory responses, including increased p38 
and ERK phosphorylation and levels of secreted IL-6 and 
TNF. These results prompt further investigation into the 
intricate and context-dependent actions of D1-like dopa-
mine receptors in modulating microglial responses and 
depression.

It is known that pro-inflammatory cytokines are regu-
lated by signaling cascades, including the MAPK and 
NF-κB pathways [55–58]. MAPK pathways involve JNK 
and ERK, which activate transcription factors promoting 
cytokine production [54]. NF-κB p65 activation involves 
phosphorylation, enabling its nuclear translocation and 
initiation of pro-inflammatory gene transcription [103]. 
In this study, SKF inhibits phosphorylation of JNK and 
ERK, disrupting the MAPK pathway and reducing acti-
vation of downstream transcription factors like AP-1, 
essential for cytokine gene expression. By targeting pJNK 
and pERK, the drug reduces cytokine production driven 
by MAPK signaling. However, it does not inhibit NF-κB 
p65 phosphorylation, leaving NF-κB-regulated cytokine 
production unaffected. Furthermore, recent studies have 
shown that D1R activation has anti-inflammatory effects 
in the brain and periphery. D1R agonists suppress neu-
roinflammation by inhibiting microglial production of 
pro-inflammatory cytokines like IL-1β and TNF [94, 
104]. This anti-inflammatory action is mediated through 
the inhibition of nucleotide-binding oligomerization 

domain 3 (NLRP3) inflammasome activation, involving 
increased ubiquitylation and autophagosomal degrada-
tion of NLRP3 [104, 105]. These effects are associated 
with improved neurological outcomes in models of intra-
cerebral hemorrhage and Parkinson’s disease. The anti-
inflammatory properties of D1R agonists suggest their 
potential as therapeutic agents for various inflammatory 
conditions, including delirium, neurodegenerative dis-
eases [94, 104, 105].

Further exploration is warranted regarding the dual 
function demonstrated by D1 receptors in regulat-
ing inflammatory responses. Given that D1R is a type 
of G protein-coupled receptor, which acts as a crucial 
upstream regulator of the MAPKKK/MAPK signaling 
pathway, we propose that the conflicting roles of D1R in 
inflammation may arise from interaction among various 
MAPK signaling pathways. Previous research has dem-
onstrated that D1R regulates multiple voltage-gated ion 
channels, NMDA receptors, and the MAPK signaling 
pathway, including ERK, JNK, and p38 [54]. Our investi-
gation primarily focuses on the MAPK signaling pathway, 
a central route in inflammation. Our results elucidate 
the dual nature of D1R. In activated microglia or under 
inflammatory conditions (e.g., exposure to LPS or TNF), 
the activation of D1-like dopamine receptors inhibits 
the production of pro-inflammatory cytokines, such as 
IL-6 and TNF, likely through suppression of JNK signal-
ing phosphorylation, consistent with previous studies 
[106–108]. Conversely, in untreated microglia, the acti-
vation of D1-like dopamine receptors directly stimulates 
the p38 and ERK pathways, resulting in the production 
of IL-6 and TNF, aligning with previous observations that 
SKF induces striatal neuronal progenitor cell death via a 
p38 and ERK dependent mechanism [54, 109]. Addition-
ally, SKF-38,393, another D1R agonist, has been shown 
to induce cytotoxicity and oxidative stress in SK-N-MC 
neuroblastoma cells by activating the ERK signaling 
pathway [54]. Hence, we propose that the contradictory 
functions of D1R in inflammation may arise from the 
activation status of different MAPK signaling pathways.

This study has several limitations. First, the most 
appropriate behavioral tests for assessing depres-
sive phenotypes in rodent models remain a subject of 
debate. In this study, we utilized the SPT and the FST 
as the primary behavioral assessments. However, while 
the FST was originally designed to evaluate antidepres-
sant efficacy, its validity as a reliable measure of depres-
sion induction has been increasingly questioned [110]. 
Second, although prior studies confirm the expression 
of D1R and D5R in mPFC neurons, this study did not 
directly validate the expression of these receptors in vivo 
within the experimental context. The absence of cell-spe-
cific receptor expression profiling in the mPFC may limit 
the interpretation of SKF’s effects. Third, while the study 
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primarily investigates the effects of SKF on microglia, the 
potential contributions of other cell types, such as astro-
cytes and neurons, to the observed outcomes were not 
explored. This narrower focus may overlook additional 
mechanisms of SKF effects. These limitations should be 
taken into consideration when interpreting our findings.

Conclusions
We have observed that female mice, when socially iso-
lated during adolescence, exhibit depression-like behav-
iors, whereas this phenotype is less evident in their male 
counterparts. Among the three investigated FS areas, 
the mPFC displays the most pronounced microglial 
activation, which positively correlated with the sever-
ity of depression-like behaviors. Administration of a 
D1-like dopamine receptor agonist in the mPFC reduces 
microglial activation and ameliorates depression-like 
symptoms in female PWI mice. However, this treatment 
also induces microglial activation and depression-like 
behaviors in non-isolated mice. These findings col-
lectively emphasize a sex-specific susceptibility to the 
consequences of social isolation during adolescence, par-
ticularly in terms of neuroinflammation and the develop-
ment of depression. Moreover, although stimulating the 
D1-like dopamine receptors signaling pathway shows 
promise in mitigating social isolation-induced neuroin-
flammation and depression, the potential risk of induc-
ing side effects by SKF in a balanced D1R/D2R situation 
deserves further investigation.
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